

USN 21EC42

Fourth Semester B.E. Degree Examination, Dec.2023/Jan.2024 **Digital Signal Processing**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Prove that the sampling of Fourier transform of a sequence x(n) results in N point DFT using which both the sequence and the transform can be reconstructed. (10 Marks)
 - b. Compute the N point DFT of $x(n) = a^n$ for $0 \le n \le N 1$. And also find the DFT of the sequence $x(n) = 0.5n \ u(n)$; $0 \le n \le 3$. (10 Marks)

OR

2 a. Compute the circular convolution of the sequences and compare the results with linear convolution. (Use time domain approach). $x(n) = \{1, 1, 1, 1, -1, -1, -1, -1\} \qquad ; \qquad h(n) = \{0, 1, 2, 3, 4, 3, 2, 1\}. \qquad (10 \text{ Marks})$

i) x(0) ii) x(4) iii) $\sum_{k=0}^{7} x(k)$ iv) $\sum_{k=0}^{7} |x(k)|^2$

Show that x(0) is always real.

(10 Marks)

Module-2

3 a. State and prove the Periodicity property and Symmetry property of twiddle factor.

(05 Marks)

- b. Given x(n) = {1, 2, 3, 4} and h(n) = {1, 2, 2}. Compute Linear convolution using circular convolution. (05 Marks)
- c. Develop an 8 point DIT FFT algorithm. Draw the signal flow graph. Determine the DFT of the sequence, $x(n) = \{1, 1, 1, 1, 0, 0, 0, 0\}$. Using the signal flow graph, show all the intermediate results on the signal flow graph. (10 Marks)

OR

- 4 a. Find the response of LTI system with an impulse response $h(n) = \{3, 2, 1\}$ for the input $\mathbf{x}(n) = \{2, +1, -1, -2, -3, 5, 6, -1, 2, 0, 2, 1\}$. Using overlap add method use 8 point circular convolution. (10 Marks)
 - b. What do you mean by computational complexity? Compare the direct computation and FFT algorithm. In the direct computation of 256 point DFT of x(n). How many

i) Complex multiplications

- ii) Complex additions
- iii) Real multiplications
- iv) Real additions and v) Trigonometric function evaluations are required. (10 Marks)

Module-3

5 a. Design an FIR filter for the following desired frequency response

$$H_d(w) = \begin{cases} e^{-j3w} & \text{if} \quad |w| \leq \frac{\pi}{4} \\ 0 & \text{if} \quad |w| > \frac{\pi}{4} \end{cases}$$

Use the Hanning window function. Obtain the frequency response of the designed FIR filter.
(10 Marks)

b. A FIR filter is given by $y(n) = x(n) + \frac{2}{5}x(n-1) + \frac{3}{4}x(n-2) + \frac{1}{3}x(n-3)$.

Draw the lattice structure and direct form.

(10 Marks)

OF

- 6 a. Design a low pass digital filter to be used in an A/D H(2) D/A structure that will have a -3 dB cutoff at 30 π rad/sec and an attenuation of 50dB at 45 π rad/sec. The filter is required to have a linear phase and the system will use a sampling rate of 100 samples 1 second.
 - b. Given $H(z) = (1 + 0.6z^{-1})^5$. i) Realize in direct form ii) Realize as a cascade of first order sections only iii) As a cascade of 1st and 2nd order sections. (10 Marks)

Module-4

- a. Derive an expression for order and cut off frequency of the Butterworth filter. (10 Marks)
 - b. Realize the following difference equation using digital structures:
 - i) Direct form I ii) Direct form II

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + \frac{1}{3}x(n-1).$$

(10 Marks)

OR

8 a. The system function of the analog filter is given as $H_a(S) = \frac{S + 0.1}{(S + 0.1)^2 + 16}$. Obtain the system

function of the digital filter using bilinear transformation which is resonant at $w_r = \frac{\pi}{2}$.

(10 Marks)

b. Realize the following system functions

 $H(z) = \frac{8z^3 - 4z^2 + 11z - 2}{(z - 0.25)(z^2 - 2 + 0.5)}$. Using direct form – II.

(05 Marks)

c. List the characteristics of commonly using Analog filters.

(05 Marks)

Module-5

- 9 a. Explain the digital signal processors based on Harvard architecture. (10 Marks)
 - b. Discuss briefly the following special digital signal processor hardware units:
 - i) Multiplier and Accumulator (μAC0 unit ii) Shifters iii) Address Generators.
 (10 Marks)

OR

- 10 a. Explain Fixed Point digital signal process using basic architecture of TMS320C54X (10 Marks)
 - family.
 b. Illustrate the operation of circular buffers used for address generation in DS processors.
 (10 Marks)