CBCS SCHEME

				The many tab			
USN [21EC32	
	T	hird Ser	nester B	.E. Deg	gree Examination, June/July 2024		
Digital System Design using Verilog							
m'	2.1				A second	r - 1 100	
Time: 3 hrs.					Max. N	Max. Marks: 100	

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. The input to a combinational logic circuit is a valid single digit BCD data. Design the logic circuit using minimum hardware to detect whenever a number greater than 5 appears at the input.

 (08 Marks)
 - b. Expand $f_1 = a + ab + a c d$ into minterm and $f_2 = a.(b + c).(a + c + d)$ into maxterm. (06 Marks)
 - c. Reduce the following function using K-map technique and implement using gates.

$$f(P, Q, R, S) = \sum m(0, 1, 4, 8, 9, 10) + \sum d(2, 11)$$
 (06 Marks)

OR

2 a. Identify all prime implicants and essential prime implicants of the following function using K-map.

$$f(a, b, c, d) = \Sigma m(0, 1, 2, 5, 6, 7, 8, 9, 10, 13, 14, 15)$$

b. Simplify the following Boolean function using Quine McCluskey method,

$$F(A, B, C, D) = \Sigma m(0, 2, 3, 6, 7, 8, 10, 12, 13)$$
 (10 Marks)

c. Minimize the expression using K-map

$$Y = (A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + B + C) \cdot (A + B + C)$$
 (04 Marks)

Module-2

3 a. Design 2-bit magnitude comparator.

(10 Marks)

(06 Marks)

- b. Implement $f(w, x, y, z) = \Sigma m(0, 4, 8, 10, 14, 15)$ using
 - i) 8×1 MUX with w, x, y as select lines.
 - ii) 4×1 MUX with w, x as select lines.

(06 Marks)

c. Implement full adder using 74138 decoder.

(04 Marks)

OR

4 a. Explain the general structure of PLDs.

- (06 Marks)
- b. Construct 4 to 16 line decoder from 2 to 4 line decoder and implement the Boolean function.
 - $f(x_3, x_2, x_1, x_0) = \Sigma m(0, 6, 9, 11, 15)$ Design 3 bit binary full subtractor using logic gates.

(08 Marks) (06 Marks)

Module-3

5 a. With neat diagram explain Master Slave JK Flip Flop.

(08 Marks)

b. Explain 4 bit universal shift register.

(08 Marks)

c. Obtain the characteristics equation for SR and T Flip Flop.

(04 Marks)

OR

6 a. Explain the working of Mod-4 twisted ring counter.

(07 Marks)

b. Design 4 bit binary ripple counter using T Flip Flop.

(06 Marks)

c. Design Mod-6 synchronous counter using clocked JK Flip Flop.

Module-4 With general syntax and suitable examples, explain the shift operators available in verilog. 7 (08 Marks) List and explain the verilog data types. (06 Marks) Realize full adder circuit using verilog data flow description. Write a verilog code for a 2×1 multiplexer in dataflow description using signal assignment. (06 Marks) 8 List all the different styles of descriptions, explain the structure of dataflow description. (06 Marks) c. Explain the following in data flow description: i) Signal declaration and assignment statement ii) Constant declaration and assignment statement iii) Concurrent signal assignment statement (08 Marks) iv) Assigning a delay time to the signal assignment statement. Module-5 Explain CASE statement with syntax. Write a behavioral description of a positive edge triggered JK Flip Flop using CASE statement in verilog. (06 Marks) Write verilog behavioral description of 8×1 MUX. (04 Marks) Write a verilog program for half adder using structural description. With example, explain the syntax of following sequential statements: (06 Marks) 10 ii) Else if i) If (08 Marks) List and explain all the loop statements in verilog. (06 Marks) Write a verilog program for 3 bit binary counter using case statement.