

b. Use mesh analysis to determine io in the accompanying circuit in Fig. Q2 (b).

(06 Marks)

c. Compute V_1 and V_2 using nodal analysis in the accompanying circuit in Fig. Q2 (c).

(07 Marks)

Module-2

3 a. Determine Io in the accompanying circuit in Fig. Q3 (a), using principle of superposition.

Fig. Q3 (a)

(08 Marks)

b. Solve the accompanying circuit for 'I', using Thevenin's theorem for the Fig. Q3 (b).

(07 Marks) (05 Marks)

- c. State and explain reciprocity theorem, using an appropriate illustration.
 - OR
- 4 a. Compute 'r_o' in the accompanying circuit in Fig. Q4 (a), using Thevenin's theorem.

(07 Marks)

b. Determine ' V_x ' using principle of superposition in the accompanying circuit, in Fig. Q4 (b).

(07 Marks)

c. Determine the value of 'R_L', that will draw maximum power transport of the circuit, in accompanying circuit Fig. Q4 (c). Also calculate the maximum power.

(06 Marks)

Module-3

22

- 5 a. For the accompanying circuit Fig. Q5 (a), determine :
 - (i) Resonant frequency ' ω_0 '.
 - (ii) \bigwedge Half power frequencies ' ω_1 ', ' ω_2 '.
 - (iii) Quality factor and bandwidth.
 - (iv) Amplitude of current at ' ω_0 ', ' ω_1 ' and ' ω_2 '

b. The key 'K' in accompanying circuit Fig. Q5 (b) closed at t = 0. Assuming the capacitor in a discharged state for t < 0, obtain an expression for capacitor voltage $V_C(t)$.

Fig. Q5 (a)

20SINWE

mH

mF

Fig. Q5 (b)

(06 Marks)

 Explain the concept of resonance in a series R-L-C circuit with help of appropriate mathematical expression. Draw indicative plots for current V/s frequency and phase V/s frequency for the same and explain.
(06 Marks)

OR

6 a. The accompanying circuit in 'Fig. Q6 (a) is assumed unexcited for t < 0. The key 'K' is closed at t = 0. Obtain the expression for $V_0(t)$.

Fig. Q6 (a) 3 of 5 (07 Marks)

- b. For the parallel R-L-C circuit in Fig. Q6 (b) shown in accompanying diagram, Find :
 - (i) Resonance frequency ' ω_0 '.
 - (ii) Half power frequencies ' ω_1 ' and ' ω_2 '.
 - (iii) Power dissipated at ' ω_0 ', ' ω_1 ' and ' ω_2 '

(07 Marks)

c. Derive the expression for quality factor (Q-factor) for a parallel resonance circuit. Explain its utility in comparing resonant circuits selectivity. (06 Marks)

Module-4

7 a. Determine Lapalace's transform of the saw-tooth wave shown in accompanying diagram in Fig. Q7 (a).

b. The circuit shown in the accompanying diagram in Fig. Q7 (b) excited by $V(t) = 12 \sin 5t$ volts, the initial current $i(0^+)$ is 5A, capacitor voltage as $t = 0^+$, $V_c(0^+)$ is 1 V, with polarity indicated, Determine i(t), using Lapalace's transformation method.

Fig. Q7 (a)

6 J 14 4 J 4

(08 Marks)

c. Given Laplace's transform of x(t), u(t) is X(s). Prove that, the Laplace's transform of x(t-a), u(t-a) is exp(-as)X(s). (05 Marks)

OR

8 a. Determine the Laplace's transform of square wave shown in accompanying diagram in Fig. Q8 (a).

(07 Marks)

4 of 5

b. The circuit in Fig. Q8 (b) accompanying diagram, is excited by a voltage pulse of height 2V and duration 5 sec. Determine the current flowing in the circuit i(t). Use Laplace's transform method. (Assume zero initial condition).

c. State and prove the initial value theorem of Laplace's transform.

(08 Marks) (05 Marks)

Module-5

Fig. Q8 (b)

- 9 a. A balanced, 3 phase, voltage 400 V, RYB sequence drives a delta connected load of $Z_{RY} = 10 \angle 60^{\circ} \Omega$, $Z_{YB} = 20 \angle 90^{\circ} \Omega$ and $Z_{BR} = 25 \angle 30^{\circ} \Omega$. Determine the line currents and total power supplied to the load. (07 Marks)
 - b. Derive expressions for 'Z' parameters of a 2-port network in terms of its 'Y' parameters. (06 Marks)
 - c. Find Y-parameters of the network shown in Fig. Q9 (c) accompanying diagram.

(07 Marks)

10 a. In a 3 ph, 3 wire $400 \angle 0^{\circ} V$, R-Y-B system, a 3-phase unbalanced load, $Z_{R} = 6 \angle 0^{\circ} \Omega$, $Z_{Y} = 6 \angle 0^{\circ} \Omega$ and $8 \angle -90^{\circ} \Omega$. Compute : line currents and power delivered to the load.

(07 Marks)

(07 Marks)

- b. What are the conditions for a 2-port network to be termed as reciprocal? Derive the conditions for a network to be reciprocal, in terms of its transmission parameters. (06 Marks)
- c. Obtain the Y-parameters for the 2-port network shown in accompanying diagram, in Fig. Q10 (c).

