

Define isomorphism of graphs. Prove that 2 graphs below are isomorphic.

Fig.Q.4(c)

1 of 3

C.

(07 Marks)

21MATCS41

Module-3

Find the correlation coefficient between the speed and the stopping distance and the 5 a. equations of regression lines.

Speed x	16	24	32	40	48	56
Stopping distance, y	0.39	0.75	1.23	1.91	2.77	3.81
Stopping alotantes, J					S. Martin	

Fit a best curve of the form $y = ax^b$ for the following data: b.

x	1	2	3	4	5
v	0.5	2	4.5	8	12.5

Fit a straight line by the method of least squares. C.

x	1	2	3	4	5	
v	14	13	9	5	2	

(07 Marks)

(07 Marks)

(06 Marks)

OR

The following are the percentage of marks in 2 subjects of 9 students. Find the rank 6 a. correlation coefficient.

x	38	50	42	61	43	55	67	46	72
y	41	64	70	75	44	55	62	56	60

Fit a 2^{nd} degree parabola $y = a + bx + cx^2$ for the data: b.

X	0	1	2	3	4	5	
y	1	3	7	13	21	31	

Given that 8x - 10y + 66 = 0 and 40x - 18y = 214 are the regression equations. Find the C. means of x and y and correlation coefficient. Find σ_y if $\sigma_x = 3$. (07 Marks)

Module-4

A random variable X has the following probability function: 7 a.

X	-2		0	1	2	3
P(x)	0.1	K	0.2	2K	0.3	K

Find: (i) K	(ii) $P(X <$	< 1) (iii) $P(X > -1)$		
-------------	--------------	------------------------	--	--

- Find the mean and standard deviation of Poisson distribution. b.
- The mean weight of 500 students in a school is 50 kgs and the standard deviation is 6 kgs. C. Assuming that the weights are normally distributed, find the expected number of students weighing (i) between 40 and 50 kg (ii) more than 60 kg. Given that A(1.67) = 0.4525. (07 Marks)

OR

Find the constant K such that 8 a.

$$f(x) = \begin{cases} Kx^2, & 0 \le x \le 2\\ 0, & \text{elsewhere} \end{cases}$$

(06 Marks) is a probability density function. Find the mean.

- When an honest coin is tossed 4 times, find the probability of getting: b. (07 Marks) (iii) at least 2 heads (ii) atmost 3 heads (i) exactly one head
- The probability that an individual suffers a bad reaction from a certain injection is 0.001. C. Using Poisson distribution, find the probability that out of 2000 individuals: (i) exactly 3 (ii) more than 2 will suffer a bad reaction. (07 Marks)

(06 Marks)

(07 Marks)

(06 Marks)

(07 Marks)

Module-5

X and Y are independent random variables such that X takes 1, 5 with probabilities $\frac{1}{2}$, $\frac{1}{2}$ 9 a respectively. Y takes -4, 2, 7 with probabilities $\frac{3}{8}$, $\frac{3}{8}$ and $\frac{1}{4}$ respectively. Find the joint (06 Marks) probability distribution of X and Y. Find Cov (X, Y). (07 Marks) 3, 3 taking the mean of the universe to be zero. The following are the I.Q's of a randomly chosen sample of 10 boys: 70, 120, 110, 101, 88, C. 83, 95, 98, 107, 100. Does this data support the hypothesis that the population mean of I.Q's

OR

- Explain the terms: 10 a.
 - Null hypothesis (i)
 - Alternate hypothesis (ii)
 - (iii) Levels of significance
 - (iv) Type 1 and Type 2 errors

is 100 at 5% level of significance?

A die is thrown 60 times and the frequency distribution for the number appearing on the face b. x is given by the following table:

x	1	2	3	4	.5	6
Frequency	15	6	4	7	14	17

Test the hypothesis that the die is unbiased. Use Chisquare test at 5% level of significantly. (07 Marks)

- The nine items of a sample have the following values 45, 47, 50, 52, 48, 47, 49, 53, 51. Does C. the mean of these differ significantly from the assumed mean of 47.5 ($t_{0.05} = 2.31$). (07 Marks)
- (06 Marks)

(07 Marks)