| ر اتک<br>با |                | CBCS SCHEME                                                                                                  |                          |
|-------------|----------------|--------------------------------------------------------------------------------------------------------------|--------------------------|
| USN         |                |                                                                                                              | 21MAT31                  |
|             | League         | Third Semester B.E. Degree Examination, June/July 2                                                          | 2024                     |
| Tr          | an             | sform Calculus, Fourier Series & Numerical T                                                                 |                          |
| Tin         | ne: 3          | hrs.                                                                                                         | ax. Marks: 100           |
|             | N              | ote: Answer any FIVE full questions, choosing ONE full question from eac                                     | ch module.               |
|             |                | Module-1                                                                                                     |                          |
| 1           | a.             | Find the Laplace Transform of, $\left(\frac{4t+5}{e^{2t}}\right)^2$ .                                        | (06 Marks)               |
|             | b.             | The square wave function $f(t)$ with period 2a is defined by,<br>$f(t) = t$ ; $0 \le t \le a$                |                          |
|             |                | $= 2a - t; a \le t \le 2a$<br>Find L[f(t)].                                                                  | (07 Marks)               |
|             | c.             | Evaluate $L^{-1}\left[\frac{s^2}{(s^2+a^2)^2}\right]$ by applying convolution theorem.                       | (07 Marks)               |
|             |                | OR OR                                                                                                        | 1                        |
| 2           | a.             | Find inverse Laplace transform $\frac{2s^2-6s+5}{s^3-6s^2+11s-6}$ .                                          | (06 Marks)               |
|             | b.             | Express the following function in terms of unit step function and hence                                      | find the Laplace         |
|             |                | transform. $f(t) = 1; 0 < t \le 1$                                                                           |                          |
|             |                | $= t; 1 \le t \le 2$<br>= $t^2; t > 2$ .                                                                     | (07 Marks)               |
|             | c.             | $= t^{-}, t > 2$ .<br>Applying Laplace transform, solve the differential equation,                           | (07 Marks)               |
|             |                | $y''(t) + 4y'(t) + 4y(t) = e^{-t}$ ,<br>Subject to the condition $y(0) = y'(0) = 0$ .                        | (07 Marks)               |
|             |                |                                                                                                              | ()                       |
| 3           | a.             | <b>Module-2</b><br>Obtain the Fourier series of $f(x) = x^2$ over the interval $[-\pi, \pi]$ , here          | nce deduce that          |
|             | 6              | $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots + \infty.$         | (06 Marks)               |
|             | b.             | 12 12 22 32 42<br>Obtain the half range sine series of the function, $f(x) = x$ in the interval (0,          | 2). (07 Marks)           |
|             | c.             | Obtain the constant term and co-efficient of first cosine and sine terms in the form the following table :   | e expansion of y         |
|             |                | x 0° 60° 120° 180° 240° 300° 360°                                                                            |                          |
|             |                |                                                                                                              | (07 Marks)               |
| 4           | a.             | Find the Fourier series of $f(x) = 2 - x$ ; $0 \le x \le 4$                                                  |                          |
|             | b.             | $x-6$ ; $4 \le x \le 8$<br>Obtain the half range sine series of the function, $f(x) = x^2$ over $(0, \pi)$ . | (06 Marks)<br>(07 Marks) |
|             | 2.             | 1 of 3                                                                                                       |                          |
|             |                |                                                                                                              |                          |
|             | and the second |                                                                                                              |                          |
|             | 8. all         |                                                                                                              |                          |

## 21MAT31

|   | c.                                                                                                    | Obtain $a_0$ , $a_1$ , $b_1$ in the Fourier expansion of y using harmonic analysis for the dat                                                                                                       | a given,     |  |  |  |  |  |  |  |  |
|---|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|--|--|
|   | С.                                                                                                    | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                               | c a          |  |  |  |  |  |  |  |  |
|   |                                                                                                       | y 9 18 24 28 26 20                                                                                                                                                                                   | (07 Marks)   |  |  |  |  |  |  |  |  |
|   |                                                                                                       | Module-3                                                                                                                                                                                             | (07 1111113) |  |  |  |  |  |  |  |  |
| 5 | a.                                                                                                    | Find the Fourier sine and cosine transforms of $f(x) = e^{-\alpha x}$ ; $\alpha > 0$ .                                                                                                               | (06 Marks)   |  |  |  |  |  |  |  |  |
|   | b.                                                                                                    | Obtain the inverse z-transform of, $\frac{2z^2 + 3z}{(z^2 - 2z - 8)}$ .                                                                                                                              | (07 Marks)   |  |  |  |  |  |  |  |  |
|   | c.                                                                                                    | Find the Fourier transform of,<br>$f(x) = x^2$ ; $ x  < a$                                                                                                                                           |              |  |  |  |  |  |  |  |  |
|   |                                                                                                       | = 0;  x  > a<br>where a is +ve constant. OR                                                                                                                                                          | (07 Marks)   |  |  |  |  |  |  |  |  |
| 6 | a.                                                                                                    | Find the Complex Fourier transform of the function,                                                                                                                                                  |              |  |  |  |  |  |  |  |  |
|   |                                                                                                       | $f(x) = 1$ for $ x  \le a$                                                                                                                                                                           |              |  |  |  |  |  |  |  |  |
|   |                                                                                                       | $= 0  \text{for }  \mathbf{x}  > a$                                                                                                                                                                  |              |  |  |  |  |  |  |  |  |
|   |                                                                                                       | Hence deduce, evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$ .                                                                                                                                     | (06 Marks)   |  |  |  |  |  |  |  |  |
|   | b.                                                                                                    | Evaluate $Z_{T}\left[2n+\sin\left(\frac{n\pi}{4}\right)+1\right]$ .                                                                                                                                  | (07 Marks)   |  |  |  |  |  |  |  |  |
|   | c.                                                                                                    | Solve the difference equation, $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$ using Z                                                                                                        | Z-Transform. |  |  |  |  |  |  |  |  |
|   |                                                                                                       | Module-4                                                                                                                                                                                             | (07 Marks)   |  |  |  |  |  |  |  |  |
| 7 | a.                                                                                                    | Classify the following partial differential equation,                                                                                                                                                |              |  |  |  |  |  |  |  |  |
|   |                                                                                                       | (i) $\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 4 \frac{\partial^2 u}{\partial y^2} - \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0$ . |              |  |  |  |  |  |  |  |  |
|   |                                                                                                       | (ii) $x^2 \frac{\partial^2 u}{\partial x^2} + (1 - y^2) \frac{\partial^2 u}{\partial y^2} = 0, -\infty < x < \infty, -1 < y < 1.$                                                                    |              |  |  |  |  |  |  |  |  |
|   |                                                                                                       | (iii) $(1+x^2)\frac{\partial^2 u}{\partial x^2} + (5+2x^2)\frac{\partial^2 u}{\partial x \partial t} + (4+x^2)\frac{\partial^2 u}{\partial t^2} = 0$                                                 |              |  |  |  |  |  |  |  |  |
|   | Ċ                                                                                                     | (iv) $(x+1)\frac{\partial^2 u}{\partial x^2} - 2(x+2)\frac{\partial^2 u}{\partial x \partial y} + (x+3)\frac{\partial^2 u}{\partial y^2} = 0$                                                        | (10 Marks)   |  |  |  |  |  |  |  |  |
|   | b.                                                                                                    | b. Find the numerical solution of the parabolic equation $\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$ , using Schmidt formula.                                              |              |  |  |  |  |  |  |  |  |
| r | Given $u(0,t) = 0 = u(4,t)$ and $u(x, 0) = x(4 - x)$ by taking $h = 1$ find the values upto $t = 5$ . |                                                                                                                                                                                                      |              |  |  |  |  |  |  |  |  |
|   | (10 Marks)                                                                                            |                                                                                                                                                                                                      |              |  |  |  |  |  |  |  |  |

٠.

9

OR

a. Solve  $u_{xx} + u_{yy} = 0$  in the following square region with the boundary conditions as indicated 8 in the Fig. Q8 (a). (10 Marks)



## **21MAT31**

b. Solve numerically  $u_{xx} = 0.0625 u_{tt}$ , subject to the conditions u(0, t) = 0 = u(5, t),  $u(x, 0) = x^{2}(x-5)$  and  $u_{t}(x,0) = 0$  by taking h = 1 for  $0 \le t \le 1$ . (10 Marks)

## Module-5

- Use Runge-Kutta method to find y(0.2) for the equation,  $\frac{d^2y}{dx^2} x\frac{dy}{dx} y = 0$ . Given that 9 a. y = 1, y' = 0 when x = 0. (06 Marks)
  - b. Find the curves on which the function,  $\int \{(y')^2 + 12xy\} dx$  with y(0) = 0 and y(1) = 1 can be (07 Marks) extremised.
  - c. Derive the Eulers equation in the form  $\frac{\partial f}{\partial y} \frac{d}{dx} \left( \frac{\partial f}{\partial y'} \right) = 0$ (07 Marks)
- Solve the differential equation y'' + xy' + y = 0 for x = 0.4, using Milne's predictor-corrector 10 a. (06 Marks) formula given that,

| X  | 0 | 0.1      | 0.2    | 0.3     |
|----|---|----------|--------|---------|
| у  | 1 | 0.995    | 0.9802 | 0.956   |
| dy | 0 | -0.0995  | -0.196 | -0.2863 |
| dx | 0 | <i>¥</i> |        |         |

- b. Find the curve on which functional  $\int_{1}^{2} \left[ (y')^2 y^2 + 2xy \right] dx$  with  $y(0) = y\left(\frac{\pi}{2}\right) = 0$  can be extremized. (07 Marks)
- Prove that shortest distance between two points in a plane is a straight line. c.

(07 Marks)