Third Semester B.E. Degree Examination, June/July 2023 Transform Calculus, Fourier Series and Numerical Techniques

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the Laplace transform

$$2^t + \frac{\cos 2t + \cos 3t}{t}$$

(06 Marks)

(07 Marks)

b. Find the Laplace transform of the triangular wave of period 2C given by

$$f(t) = \begin{cases} t & 0 < t < c \\ 2c - t & c < t < 2c \end{cases}$$

c. Using convolution theorem find the inverse Laplace transform of

$$\frac{s}{(s^2 + a^2)^2}$$
 (07 Marks)

OR

2 a. Express the function f(t) in terms of unit step function and hence find the Laplace transform

of
$$f(t) = \begin{cases} \sin t & 0 < t < \pi \\ \sin 2t & \pi < t < 2\pi \\ \sin 3t & t \ge 2\pi \end{cases}$$
 (06 Marks)

b. Find the inverse laplace transform $\frac{2s^2 - 6s + 5}{(s - 1)(s - 2)(s - 3)}$ (07 Marks)

c. Solve the using Laplace transform method

$$y''(t) + 4y'(t) + 4y = e^{-t}$$
 $y(0) = 0$ $y'(0) = 0$ (07 Marks)

Module-2

3 a. Obtain the Fourier series of $f(x) = \frac{\pi - x}{2}$ in $0 < x < 2\pi$. Hence deduce that

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$
 (06 Marks)

b. Obtain the half range cosine series for the function f(x) = 2x - 1 in 0 < x < 1 (07 Marks)

c. Obtain the Fourier series of y up to the first harmonic for the following values:

x°	45	90	135	180	225	270	315	360
y	4.0	3.8	2.4	2.0	-1.5	0	2.6	3.4

(07 Marks)

OR

- 4 a. Obtain the Fourier series of $f(x) = x \cos x$ in the interval $-\pi \le x \le \pi$. (06 Marks)
 - b. Obtain the sine half range Fourier series for the function,

$$f(x) = \begin{cases} \frac{2Kx}{\ell} & \text{in } 0 \le x \le \frac{\ell}{2} \\ \frac{2K}{\ell} (\ell - x) & \text{in } \frac{\ell}{2} \le x \le \ell \end{cases}$$
 (07 Marks)

c. Obtain the constant term and the first three coefficients in the Fourier cosine series of y in the following data:

(07 Marks)

Module-3

5 a. Find the complex Fourier transform of the function,

$$f(x) = \begin{cases} a^2 - x^2 & \text{for } |x| < a \\ 0 & \text{for } |x| > a \end{cases}.$$

Hence evaluate
$$\int_{0}^{\infty} \left(\frac{\sin s - s \cos s}{s^{3}} \right) ds = \frac{\pi}{2}.$$
 (06 Marks)

- b. Find the Fourier sine transform of e^{-ax} . (07 Marks)
- c. Find the z-transform of $cosn\theta$ and $sinn\theta$. (07 Marks)

OR

- 6 a. Find the Fourier cosine transform of the function, $f(x) = \begin{cases} 4x & 0 < x < 1 \\ 4 x & 1 < x < 4 \\ 0 & x > 4 \end{cases}$ (06 Marks)
 - b. Find the inverse z-transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$. (07 Marks)
 - c. Solve by using z-transform $y_{n+2} 4y_n = 0$ given that $y_0 = 0$ and $y_1 = 2$. (07 Marks)

Module-4

7 a. Classify the following partial differential equation

i)
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + 4 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x} \partial \mathbf{y}} + 4 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} - \frac{\partial \mathbf{y}}{\partial \mathbf{x}} + 2 \frac{\partial \mathbf{u}}{\partial \mathbf{y}} = 0$$

ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} + (1 - y^2) \frac{\partial^2 u}{\partial y^2} = 0 - \infty < x < \infty, -1 < y < 1$$

iii)
$$(1+x^2)\frac{\partial^2 u}{\partial x^2} + (5+2x^2)\frac{\partial^2 u}{\partial x \partial t} + (4+x^2)\frac{\partial^2 u}{\partial t^2} = 0$$

iv)
$$(x+1)\frac{\partial^2 u}{\partial x^2} - 2(x+2)\frac{\partial^2 u}{\partial x \partial y} + (x+3)\frac{\partial^2 u}{\partial y^2} = 0$$
 (10 Marks)

21MAT31

b. Find the values of u(x, t) satisfying the parabolic equation $\frac{\partial^2 u}{\partial x^2} = 2\frac{\partial u}{\partial t}$ and its boundary conditions u(0, t) = 0 = u(4,t) and u(x, 0) = x(4-x) by taking h-1 find the value up to t = 5.

OR

- 8 a. Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in 0 < x < 5, $t \ge 0$ given that u(x, 0) = 20 u(0, t) = 0 u(5,t) = 100 compute U for the time step h = 1 by crank Nicholson method. (10 Marks)
 - b. Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ subject to the condition u(0, t) = 0 u(4, t) = 0 $u_1(x, 0) = 0$ and u(x, 0) = x(4 x) by taking h = 1, K = 0.5 up to four steps. (10 Marks)

Module-5

- a. Given $\frac{d^2y}{dx^2} x^2 \frac{dy}{dx} 2xy = 1$, y(0) = 1, y'(0) = 0 evaluate y(0.1) using Runge-Kutta method of order 4. (06 Marks)
 - b. Derive the Euler's equation of the form $\frac{\partial t}{\partial y} \frac{d}{dx} \left(\frac{\partial t}{\partial yl} \right) = 0$. (07 Marks)
 - c. Find the extremal of the functional $I = \int_{0}^{\frac{\pi}{2}} (y^2 y'^2 2y \sin x) dx$ under the conditions $y(0) = y(\pi/2) = 0$. (07 Marks)

OR

- 10 a. Apply Milne's predictor corrector method to solve $\frac{d^2y}{d^2x} = 1 2y\frac{dy}{dx}$ at 0.8 given that y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762, y'(0) = 0, y'(0.2) = 0.1996, y'(0.4) = 0.3937, y'(0.6) = 0.5689. (06 Marks)
 - b. Show that the geodesics on a plane are straight line. (07 Marks)
 - c. Which curve the functional $\int_{0}^{\frac{\pi}{2}} (y'^2 y^2 + 2xy) dx, y(0) = 0, y(\pi/2) = 0 \text{ be extremized.}$ (07 Marks)

* * * * *