USN

21CS34

Third Semester B.E. Degree Examination, Dec.2023/Jan.2024 Computer Organization and Architecture

CBCS SCHEME

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

	а.	with a neat diagram, explain basic operational concepts of a computer. (10 Marks)
	b.	Define the basic performance equation. Summarize the measures to improve the performance. (05 Marks)
	c.	Explain the overall SPEC rating for the computer in a programming suit. (05 Marks)
	0.	Explain the overall of the compatel in a programming suit. (to marks)
		OR
2	a.	What is addressing mode? Explain different types of addressing mode with examples.
		(10 Marks)
	b.	Show the big and little endian assignments for the number 22354456. (05 Marks)
	c.	Explain with basic types of the instruction formats to carry our $c \leftarrow [A] + [B]$. (05 Marks)
		Module-2
3	a.	Illustrate a program that reads one line from the keyboard, stores in memory buffer, and
•		echoes it back to the display in an I/O interfaces. (05 Marks)
	b.	Explain the following with respect to interrupts:
		(i) Interrupt Nesting
		(ii) Simultaneous requests (10 Marks)
	c.	Define exception. Explain two kinds of exception. (05 Marks)
	0.	
		OR
4	a.	With a neat diagram, explain the centralized arbitration scheme and distributed bus
-	a.	arbitration scheme. (10 Marks)
	1-	
	b.	With a neat timing diagram, illustrate the asynchronous bus data transfer during an input
		operation. Use Handshake scheme. (05 Marks) With next diagram, explain how to connect keyboard to processor (05 Marks)
	0	Whith neat diagram explain now to connect keyboard to $nrocessor$ (05 Marks)

c. With neat diagram, explain how to connect keyboard to processor. (05 Marks

Module-3

a. With a neat diagram, explain the organization of a 2M × 32 memory module using 512K × 8 static memory chips. (10 Marks)

- b. Explain different types of non volatile memories. (05 Marks)
- c. Explain with a neat block diagram of memory hierarchy in a contemporary computer system indicating variation of size, speed and cost per bit in the hierarchy. (05 Marks)

OR

a.	Briefly explain any two mapping function used in cache memory.	(10 Marks)
b.	With a diagram, explain how virtual memory address is translated.	(05 Marks)
c.	Calculate the average access time experienced by a processor, if a cache hit rate i	s 0.88, miss
	nonalty is 0.015 millises and eache access time is 10 micro seconds	(05 Marks)

5

6

21CS34

Module-4

- a. Convert the following numbers into signed 5 bit numbers and add them. Also, tell whether 7 overflow has occurred or not. (i) 13, 5 (ii) -15, -7(05 Marks)
 - Explain with diagram the design and working of 16 bit carry look ahead adder built from b. (10 Marks) 4-bit adders.
 - Solve the following using sequential circuit binary multiplier: (i) 11×13 (ii) 12×9 C. (05 Marks)

OR

- With a neat diagram, explain single bus organization of computer. (10 Marks) 8 a. List out the actions needed to execute the instruction Add (R3), R1. Write the sequence b. (05 Marks)
 - control steps for the execution of the same. Explain with a neat diagram, micro-programmed control unit method for design of control c. (05 Marks) unit.

Module-5

Explain pipelining processing with example. (10 Marks) a. b. Explain processor with multiple functional units. (05 Marks) (05 Marks) Explain arithmetic pipeline. C.

OR

9

Explain four segment instruction pipeline. 10 a. b. Explain SIMD array processor. Explain vector processing. C.

(10 Marks) (05 Marks) (05 Marks)