	CBCS SCHEME	
USN		21CS33
	Third Semester B.E. Degree Examination, June/July 2023	
	Analog and Digital Electronics	
m'		arks: 100
Tin	Max. M	arks. 100
	Note: Answer any FIVE full questions, choosing ONE full question from each mo	dule.
	Module-1	
1	a. With a neat diagram and mathematical analysis explain fixed bias circuit.	(06 Marks) (06 Marks)
	b. With hysteresis characteristics explain the working of Inverting Schmitt trigger.	(06 Marks) (08 Marks)
	c. Explain current to voltage and voltage to current convertor.	(Uo Marks)
	OR	
2	a. Discuss Regulated power supply parameters.	(06 Marks)
	b. Explain the working of R-2R ladder D to A convertor.	(06 Marks)
	c. Explain successive approximation A to D convertor.	(08 Marks)
	Module-2	
3	a. Minimize the following function using K-map and implement it using basic gates	,
	$f(A, B, C, D) = \sum m(0, 1, 2, 5, 7, 8, 9, 10, 13, 15)$	(06 Marks)
	b. Simplify the following function using Quine McClusky method.	
	$f(A, B, C, D) = \sum m(0, 1, 2, 3, 5, 7, 8, 10, 12, 13, 15)$	(08 Marks)
	c. Minimize the following function for POS using K-map and realize using basic ga	ins
	$f(a, b, c, d) = \pi M(0, 1, 6, 8, 11, 12) + d(3, 7, 4, 15)$	(06 Marks)
	OR	
4	a. With an example explain Petrick's method.	(06 Marks)
	 b. Simplify the following function using Quine – McClusky method 	(00
	$f(A, B, C, D) = \sum m(2, 3, 7, 9, 11, 13) + \sum d(1, 10, 15)$	(08 Marks)
	c. With the help of flow chart explain how to determine minimum sum of pro-	
	Karnaugh map.	(06 Marks)
	Module-3	
5	a. Explain with neat diagram static 'O' hazard and how Static-O hazard can be d	
	removed with example.	(08 Marks)
	b. What is multiplexer, explain 8-to-1 multiplexer with the help of logic di	
	corresponding expression.	(06 Marks)
	c. Explain with a neat diagram 3:8 decoder.	(06 Marks)
	OR	
6	a. Implement the following function using PLA.	
v	$f_1(a, b, c) = \sum m(0, 4, 6, 7)$	
	$f_2(a, b, c) = \sum m(4, 6)$	(06 Marks)
	 b. Explain seven segment decoder and realize using PLA. 	(10 Marks)
	c. Explain simulation and testing of digital circuits.	(04 Marks)

c. Explain simulation and testing of digital circuits.

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

1 of 2

21CS33

Module-4

7	a.	Explain structure of VHDL program. Write VHDL code for 4 bit parallel a	dder using full
		adder as component.	(08 Marks)
	b.	Explain the working of SR latch using NOR gates.	(06 Marks)
	C	Explain edge triggered D flip flop.	(06 Marks)

OR

8a. Explain J-K Master slave flip flop with suitable timing diagram.(10 Marks)b. Derive the characteristics equations for D, T, SR and JK flip flops.(10 Marks)

Module-5

- 9 a. What is shift register? Explain the works of 8-bit SISO using SR flip flop with Timing diagram. (10 Marks)
 - b. With a block diagram explain the working of n bit parallel adder with accumulator.

(10 Marks)

OR