USN	
-----	--

21MAT11

First Semester B.E. Degree Examination, June/July 2023 Calculus and Differential Equations

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. With usual notations prove that $\tan \phi = r \frac{d\theta}{dr}$. (06 Marks)

b. Find the angle between the curves $r^2 \sin 2\theta = 4$ and $r^2 = 16 \sin 2\theta$. (07 Marks)

Show that for the curve $r(1 - \cos\theta) = 2a$, ρ^2 varies as r^3 .

OR

2 a. Find the pedal equation of the curve $\frac{2a}{r} = 1 + \cos\theta$. (06 Marks)

b. Find the angle between the curves $r = a \log \theta$ and $r = \frac{a}{\log \theta}$. (07 Marks)

c. Find the radius of curvature of the curve $x^3 + y^3 = 3axy$ at $\left(\frac{3a}{2}, \frac{3a}{2}\right)$. (07 Marks)

Module-2

3 a. Expand the function $\sqrt{1+\sin 2x}$ by Maclaurin's series up to the term containing x^4 .

(06 Marks)

(07 Marks)

b. If u = f(2x - 3y, 3y - 4z, 4z - 2x) then show that $6u_x + 4u_y + 3u_z = 0$. (07 Marks)

c. If $x = r \sin\theta \cos\phi$, $y = r \sin\theta \sin\phi$, $z = r \cos\theta$. Show that $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)} = r^2 \sin\theta$. (07 Marks)

OR

4 a. Evaluate: $\lim_{x \to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{1/x}.$

(06 Marks)

b. If $u = \tan^{-1}(y/x)$ where $x = e^t - e^{-t}$ and $y = e^t + e^{-t}$, find the total derivative $\frac{du}{dt}$ using partial differentiation. (07 Marks)

c. Find the extreme values of $x^3 + y^3 - 3x - 12y + 20$.

(07 Marks)

Module-3

5 a. Solve: $\frac{dy}{dx} - y \tan x = y^2 \sec x$.

(06 Marks)

b. Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$ where λ is a parameter. (07 Marks)

parameter. c. Solve: $p^2 + 2py \cot x - y^2 = 0$.

(07 Marks)

2. Any revealing of identification, appeal to evaluator and l or equations written eg, 42+8=50, will be treated as malpractice.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

21MAT11

OR

- 6 a. Solve: $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$. (06 Marks)
 - b. Water at temperature 10°C takes 5 minutes to warm up to 20°C at a room temperature of 40°C. Find the temperature of the water after 20 minutes. (07 Marks)
 - c. Find the general solution of the equation $(px y)(py + x) = a^2p$ by reducing into Clairaut's form by taking the substitution $X = x^2$, $Y = y^2$. (07 Marks)

Module-4

7 a. Solve:
$$(4D^4 - 4D^3 - 23D^2 + 12D + 36)y = 0$$
. (06 Marks)

b. Solve:
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4$$
. (07 Marks)

c. Solve by using method of variation of parameters
$$y'' - 2y' + y = \frac{e^x}{x}$$
. (07 Marks)

OR

8 a. Solve:
$$y'' + 2y' + y = e^{3x}$$
. (06 Marks)

b. Solve:
$$x^3 \frac{d^3y}{dx^3} + 3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + 8y = 65\cos(\log x)$$
. (07 Marks)

c. Solve:
$$(D^2 + 4)y = x^2$$
. (07 Marks)

Module-5

9 a. Find the rank of a matrix by reducing in to echelon form

$$\begin{bmatrix}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{bmatrix}$$
(06 Marks)

- b. Solve the system of equations by Gauss-Jordan method: 2x + 5y + 7z = 52, 2x + y z = 0, x + y + z = 9. (07 Marks)
- c. Solve the system of equations by Gauss-Seidel iterative method: x + y + 54z = 110, 27x + 6y z = 85, 6x + 15y + 2z = 72. Perform 3 iterations by choosing (0, 0, 0) as initial approximation.

OR

- 10 a. For what values of λ and μ , the system of equations x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ has (i) no solution (ii) Unique solution (iii) Infinitely many solutions.
 - b. Solve the system of equations by Gauss elimination method: x + y + z = 9, x 2y + 3z = 8, 2x + y z = 3. (07 Marks)
 - c. Using Rayleigh's power method, find the largest eigen value and the corresponding eigen

vector of the matrix $\begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ by taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as initial eigen vector. Carry out 5

iterations. (07 Marks)

* * * * *