Second Semester B.E. Degree Examination, Jan./Feb. 2023 Advanced Calculus and Numerical Methods

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Evaluate $\iint_R dy dx$ where R is the region bounded by the parabola $y^2 = 4x$ and line $x = \frac{1}{4}$.

(06 Marks)

b. Evaluate $\int_0^1 \int_{\sqrt{y}}^{2-y} xy \, dx \, dy$ by changing the order of integration.

(07 Marks)

c. Prove that $\beta(m, n) = \frac{\left|\overline{m}\right| \overline{n}}{\left|\overline{m+n}\right|}$.

(07 Marks)

OR

2 a. Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{(x+y+z)} dz dy dx$.

(06 Marks)

b. By changing to the polar co-ordinates, evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dxdy$.

(07 Marks)

c. Prove that $\frac{1}{2} = \sqrt{\pi}$.

(07 Marks)

Module-2

3 a. Find a and b such that the surfaces $ax^2y + z = 12$ and $5x^2 - byz = 9x$ intersect orthogonally at (1, -1, 2).

b. If $\vec{F} = (x + y + 1)$ z + j - (x + y) k, then show that \vec{F} . Curl $\vec{F} = 0$.

(07 Marks)

c. Show that $\vec{F} = \left(\frac{x}{x^2 + y^2}\right) i + \left(\frac{y}{x^2 + y^2}\right) j$. Is both solenoidal and irrotational. (07 Marks)

OR

4 a. If $\vec{F} = x^2 i + xy j$, evaluate $\int \vec{F} \cdot dr$ from (0, 0) to (1, 1) along

i) the line y = x ii) t

ii) the parabola $y = \sqrt{x}$.

(06 Marks)

b. Evaluate using Green's theorem $\int_{c}^{c} e^{-x} \sin y \, dx + e^{-x} \cos y \, dy$, where C is the rectangle with

vertices. (0, 0), $(\pi, 0)$, $(\pi, \pi/2)$, $(0, \pi/2)$.

(07 Marks)

c. Apply Gauss divergence theorem to evaluate $\iiint div F dv$ where

 $\vec{F} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k \text{ taken over the reactangular parallelepiped } 0 \le x \le a \text{ ,} \\ 0 \le y \le b, \ 0 \le z \le c. \tag{07 Marks}$

Module-3

a. Form the partial differential equation by eliminating the arbitrary function from (06 Marks) Z = yf(x) + xg(y).

b. Solve $\frac{\partial^2 z}{\partial x^2} + z = 0$, given that when x = 0, $z = e^y$ and $\frac{\partial z}{\partial x} = 1$. (07 Marks)

c. Solve $(mz - ny) \frac{\partial z}{\partial x} + (nx - \ell z) \frac{\partial z}{\partial y} = \ell y - mx$. (07 Marks)

a. Form the partial differential equation by eliminating arbitrary constants from

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$
 (06 Marks)

b. Solve $\frac{\partial^2 z}{\partial x \partial t} = e^{-2t} \cos 3x$ subject to the condition i) z(x, 0) = 0 ii) $\frac{\partial z}{\partial t}(0, t) = 0$. (07 Marks)

With usual notations derive One-dimensional heat equation.

(07 Marks)

 $\frac{\text{Module-4}}{\text{Find a real root of the equation } \tan x + \tanh x = 0 \text{ in } (2, 3) \text{ by the Regula-Falsi method,}$ 7 (06 Marks) correct to 2 decimal places.

A function y = f(x) is given by b.

x :	1	1.2	1.4	1.6	1.8	2.0
y :	0.0	0.128	0.544	1.296	2.432	4.00

Find f(1.1) by using Newton's forward interpolation formula.

(07 Marks)

By dividing the interval $(0, \pi)$ into 6 equal parts, find the approximate value of $\int e^{\sin x} dx$ using Simpson's 1/3rd rule. (07 Marks)

OR

By Newton-Raphson method find the root that lies near x = 4.5 of the equation tan x - x = 0(06 Marks) correct to 4 decimal places. (x is in radians).

Using Lagrange's interpolation method, find the value of f(x) at x = 5 given the values

x:	1	3	4	6
f(x):	3	9	30	132

(07 Marks)

c. Using Simpson's $3/8^{th}$ rule, evaluate $\int_{0.3}^{0.3} \sqrt{1-8x^3} dx$ by taking 7 ordinates. (07 Marks)

Module-5

a. Use Taylor series method to find y(0.1) considering upto fourth degree term, given that $\frac{dy}{dx} = x - y^2$, y(0) = 1. (06 Marks)

Using Runge-Kutta method of fourth order, find y(0.1) for the equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1 (07 Marks) taking h = 0.1.

c. Given that $\frac{dy}{dx} = x - y^2$ and y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762, compute y at x = 0.8 by applying Milne's method. (07 Marks)

OR

- 10 a. Using modified Euler's method find y(0.1) correct to four decimal places taking h = 0.1, given that $\frac{dy}{dx} = 3x + \frac{1}{2}y$ with y(0) = 1. (06 Marks)
 - b. Use fourth order Runge-Kutta method to solve $(x + y)\frac{dy}{dx} = 1$, y(0.4) = 1 at x = 0.5 correct to four decimal places. (07 Marks)
 - c. If $\frac{dy}{dx} = 2e^x y$, y(0) = 2, y(0.1) = 2.010, y(0.2) = 2.040, y(0.3) = 2.090, find y(0.4) correct to four decimal places by using Milne's predictor corrector method. (07 Marks)