CBCS SCHEME

USN													22MIA/MAR2
-----	--	--	--	--	--	--	--	--	--	--	--	--	------------

Second Semester M.Tech. Degree Examination, June/July 2023 Robotics for Industrial Automation

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		2. M: Marks, L: Bloom's level, C: Course outcomes.			
		Module – 1	M	L	С
Q.1	a.	Describe the relationship of robotics with industrial automation.	10	L1	CO1
	b.	Compare three basic types of robot drives enlisting their merits and demerits.	10	L2	CO1
		OR	•		
Q.2	a.	Explain the different performance parameters of robotic system.	12	L3	CO1
	b.	Sketch and explain four basic configurations of robots.	08	L3	CO1
		Module – 2			
Q.3	a.	With the help of a block diagram, explain a typical robot vision system.	10	L2	CO ₂
	b.	Explain the remote center of compliance as an assembly aid.	10	L3	CO2
		OR			
Q.4	a.	Discuss the fundamentals of image processing in a robot vision system.	10	L2	CO ₂
	b.	With a neat sketch explain the textile sensor for robotic applications.	10	L2	CO ₂
		Module – 3			68
Q.5	a.	In Fig.Q5(a)(i), determine the proper homogenous transformation H that produces an object (Pyramid) manipulation from the initial position and orientation given by Fig.Q5(a)(ii). (5,0,4) A (6,1,0) E (6,1,0) B (6,1,0) B Fig.Q5(a)(ii) Fig.Q5(a)(ii)	10	L3	CO3
	b.	Explain DH convention briefly.	10	L2	CO3
×		OR			
Q.6	a.	Give Euler angle representation for the RPY system and derive the rotation matrix.	10	L2	CO3
	b.	A two degree of freedom robot manipulator is shown in Fig.Q6(b). Given that the length of each link is 1 unit. Establish link coordinate frame and kinematic parameters. Find 0_{A1} and 1_{A2} . Arrive at the inverse kinematic solution to this problem.	10	L2	CO3
		Fig.Q6(b)			

		Module – 4			
Q.7	a.	Obtain the L-E formation of dynamic equation for a general manipulator.	15	L1	CO ₄
	b.	Derive the expression for Joint velocities for a two link manipulator shown in Fig.Q7(b).	05	L3	CO4
		Fig.Q7(b)			
	L	OR			
Q.8	a.	Using the L-E formation determine the equation of motion for the RP	12	L3	CO4
Q.o		manipulator shown in Fig.Q8(a).			
		Fig.Q8(a)			2
	b.	Explain the following as applied to a robot arm and also discuss their importance: i) Centrifugal force ii) Coriolis component	08	L2	CO4
		Module – 5			
Q.9	a.	Explain a robot program as a path in space with examples.	10	L1	CO5
	b.	Describe motion interpolation with an example.	10	L2	CO5
		OR			
Q.10	a.	With the help of a block diagram explain robot language structure.	10	L3	CO5
	b.		10	L2	CO5