CBCS SCHEME

11	 		>
USN		22SCS/SAM/SCN/SAD/VSA/VSC/VC	S12
11 1	1 1 1 1		

First Semester M.Tech Degree Examination, June/July 2023

Fundamentals of Data Science

Time: 3 hrs,

Max. Marks: 100

Note: I. Answer any FIVE full questions, choosing ONE full question from each module. 2. M.; Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C						
Q.1	a.	What is data science and Big data? Explain need for data science.	10	L1	CO1						
V.1	b.	Explain the following terms:	10	L1	CO1						
	~ '	i) Data integration									
		ii) Data reduction			•						
		iii) Data transformation									
		iv) Data discretization									
		v) Datafication.									
		OR			·						
Q.2	a.	With a neat diagram explain data science process.	10	L2	CO1						
	b.	Briefly explain how the class and objects are defined in R.	10	L2	CO ₂						
		000									
		Module – 2									
Q.3	a.	State and explain the steps involved in K-means clustering.	10	L2	CO ₂						
	b.	Explain EDA (Exploratory Data Analysis) with the help of example.	10	L2	CO ₂						
	OR										
Q.4	a.	What is linear regression algorithm? What are the basic assumptions of the	10	L1	CO2						
		linear regression algorithm?									
	b.	Define KNN. Explain similarity or distance matrices in detail.	10	L2	CO ₂						
		Module – 3									
Q.5	a.	How to build and apply Naïve Bayes classification for spam filtering.	10	L2	CO3						
	b.	Which algorithms are best to use for spam filtering? How should they be	10	L1	CO3						
		implemented?									
		OR OR		_							
Q.6	a.	Explain the purpose of Laplace smoothing.	10	L2	CO3						
	b.	Explain the three core problems of data scientists at M6D.	10	L2	CO ₃						
Module – 4											
Q.7	a.	What is the difference between wrapper and embedded feature selection?	10	L1	CO3						
	b.	What is Entropy? Explain Decision Tree Algorithm.	10	L2	CO3						
		OR (C)	Lan.								
Q.8	a.	Explain Random forests algorithm with a sample code.	10	L2	CO3						
	b.	Explain principal component analysis (PCA) with its importance and	10	L2	CO3						
		Limitations.	9								
	5			77.	and a						
		Module – 5	T	`AS	2)						
Q.9 <	a.	What is Map Reduce? Explain the working of Map Reduce.	10	L2/	€04						
- Common	b.	Define Data Visualization. Illustrate how data visualization is better than	10	L2	CO4						
		the traditional text based data methods.	L		1/35						
OR											
Q.10	a.	What are Social Networks Graphs? How does clustering of social networks	10	L1	CO4						
		graph works?	10	T 0	GO.						
	b.	Explain Girvan – Newman Algorithm for Community Detection.	10	L2	CO4						