

First Semester MCA Degree Examination, Jan./Feb. 2023 Design and Analysis of Algorithms

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Define algorithm. Illustrate the characteristics of an algorithm.	06	L1	C01
	b.	List and explain the different problem types of an algorithm.	04	L1	C01
	c.	Explain asymptotic notations, with a diagram and explain with an example.	10	L2	CO1
		OR			
Q.2	a.	Design a general plan for analyzing the non recursive algorithm. Design an algorithm for element uniqueness in an array. Obtain its time complexity.	12	L3	CO2
	b.	List and explain the fundamental data structures with definition and examples.	08	L1	CO2
	4	Module – 2	1		
Q.3	a.	Design a binary search algorithm and derive its time complexity and apply the same to search an element "42" from the given elements. 3, 14, 27, 31, 40, 42, 55, 66	12	L3	CO2
	b.	Sort the following elements using Quick Sort. Show only 1 st partition. 50, 30, 10, 90, 60, 40, 35, 62	08	L3	CO2
		OR			
Q.4	a.	Define Topological Sorting. Obtain the topological ordering of elements using DFS and Source Removal Method, for the following graph Fig.Q4(a): \overbrace{O} $\overbrace{Fig.Q4(a)}$	10	L3	CO2
	b.	Define Heap. Explain different types of heap. Sort the following elements using heap sort technique by creating bottom-up max heap tree. 26, 14, 18, 42, 6, 9, 38	10	L3	C01
	1	Module – 3			
Q.5	a.	Consider the following jobs with their profits and deadlines. Find the executing job sequence using greedy to obtain max profit. $\langle p_1, p_2, p_3, p_4, p_5, p_6 \rangle = \langle 23, 45, 6, 18, 60, 5 \rangle$ $\langle d_1, d_2, d_3, d_4, d_5, d_6 \rangle = \langle 3, 2, 1, 4, 2, 1 \rangle$	10	L3	CO2

22MCA15

Srinivas Institute of Tachne 22MCA15

