

22MCA13

		OR			
Q.6	a.	Explain getNode() and freeNode() operation with C code snippet.	6	L2	CO3
	b.	Write a note on header nodes in linked list with neat diagram.	4	L2	CO3
	c.	Write C code snippet to demonstrate application of linked list as stack for implementing push and POP operations.	10	L3	CO3
	I	Module – 4			
Q.7	a.	What is binary tree? Write note on threaded binary tree with neat diagram.	10	L2	CO3
	b.	Construct the binary search tree for the data 27, 5, 36, 47, 19, 250, 21, 44, 6. Perform preorder, Inorder and Postorder traversal for the constructed BST.	10	L3	CO4
		OR			
Q.8	a.	Write a note on Array and linked representation of binary tree.	8	L3	CO3
	b.	Write recursive function for the following operations on binary search tree: i) Insert key in BST ii) Search key in BST.	12	L3	CO3
		Module – 5			.
Q.9	a.	Define DFS and BFS. Obtain the difference between both. Traverse the following graph using DFS and BFS. Assume the source node is B.	10	L3	CO4
	b.	What is radix sort? Sort the following numbers using radix sort and show the table of various passes of radix sort. List : 326, 453, 608, 835, 751, 435, 704, 690.	10	L3	CO ²
~	1	OR Constant of the sect discourse	4	1.3	CO4
Q.10	a.	What is a graph? Explain array representation of graph with neat diagram.	4		
	b.	What is hash collision? Explain various methods for resolving hash collisions.	6	L2	CO4
	c.	Implement the hash function $h(k) = k\%$ 10 on the numbers: 10, 34, 23, 56, 14, 89, 65, 94, 53, 21, 63, 33. Show the hash table. Resolve hash clashes using separate chaining method.	10	L3	CO