USM

08MAR22

Second Semester M.Tech. Degree Examination, December 2010 **Modern Control Engineering**

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions.

2. Missing data, if any, may be suitably assumed.

- 1 Explain the terms: i) System
- ii) Disturbances
- iii) Transform function
- iv) Open loop control system v) Block diagram. b. Explain, giving equations, the functions of, i) Integral control derivative control.
 - (10 Marks) ii) Proportional plus

(10 Marks)

Sketch the root locus for the open loop transfer function, 2

G(s)H(s) =
$$\frac{K(s+2)}{S(s^2+2s+2)}$$

Discuss the stability of the system as a function of K.

(20 Marks)

3 A unity feedback control system has, $G(s) = \frac{80}{s(s+2)(s+20)}$.

Draw the bode plot and determine

- i) Gain and phase margins.
- ii) Gain crossover and phase crossover frequencies.

Comment on the stability.

(20 Marks)

Write a note on M and N circles.

- Sketch the polar plot for a system with $G(s)H(s) = \frac{10}{s(s+1)(s+2)}$. Calculate gain margin and hence comment on its stability.

(14 Marks)

- 5 a. Draw the Nyquist plot for $G(s)H(s) = \frac{40}{(s+4)(s^2+2s+2)}$ (10 Marks)
 - Write short notes on: i) Lag compensation
- ii) Lead compensation.
- (10 Marks)
- A feedback system has the closed loop transfer function, $\frac{Y(s)}{U(s)} = \frac{\delta}{s^3 + 3s^2 + 7s + 9}$. 6 a state model. (06 Marks)

b. Determine the transfer function of the system having the state model,

$$\begin{bmatrix} \overset{\circ}{X}_1 \\ \overset{\circ}{X}_2 \end{bmatrix} = \begin{bmatrix} -2 & -3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 3 \\ 5 \end{bmatrix} u(t); \quad y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

(06 Marks)

c. A control system is described by,

$$\begin{bmatrix} \overset{\circ}{\mathbf{X}}_1 \\ \overset{\circ}{\mathbf{X}}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}(t); \quad \mathbf{y}(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

Determine if the system is completely controllable and observable.

(08 Marks)

Define z-transform.

to de la companione de la

(02 Marks)

Find the transient and steady state response of a mechanical control system represented by the equation, $0.5 \frac{dy}{dy} + 8y = 8 \times 6t$, taking y(0)=0. (08 Marks)

Using the block diagram reduction technique, find the closed loop transfer function of the (10 Marks) system shown in figure Q7 (c).

Write short notes on:

- Sampled-data control system.
- Computer-controlled system. b.
- State transition matrix. c.
- Gain margin and phase margin. d.

(20 Marks)