Second Semester M.Tech. Degree Examination, June/July 2011 Modern Control Engineering

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. Write short notes on:
 - i) Coulomb friction force
 - ii) Viscous friction force.

(08 Marks)

- b. What restriction must be placed upon the parameter K, in order to insure that the system of the characteristic, $S^4 + 6S^3 + 11S^2 + 6S + K = 0$ is stable? (12 Marks)
- Sketch the root locus of the unity feedback control system which has the open loop transfer function, $G(s) = \frac{K(s+2)}{s^2 + 2s + 3}$ and determine the closed loop value of K, for a damping ratio of $\sqrt{3}/2$.

 (20 Marks)
 - Construct the asymptotic 'Bode plots' for a unity feedback system phase open loop transfer function is given by, $G(s) = \frac{10}{s(1+s)(1+0.02s)}$ and find,
 - i) gain and phase crossover frequency
 - ii) gain and phase margin
 - iii) stability of the closed loop system.

(20 Marks)

(08 Marks)

4 a. Draw the appropriate polar plot of

$$G(s) = \frac{1}{s(1+\tau_1 s)(1+\tau_2 s)}$$
 (Assume τ_1 and τ_2 suitably.) (08 Marks)

- b. A unity feedback system is characterized by an open loop transfer function $G(s) = \frac{K}{s(s+10)}$. Determine, i) the gain K, so that the system will have a damping ratio of 0.5. ii) for the above value of K, determine the setting time, iii) peak over shoot and iv) time to peal over shoot for a unit step input. (12 Marks)
- Draw the Nyquist plot and examine the stability of the closed loop system whose open loop transfer function is $G(s)H(s) = \frac{7(s+10)^2}{s^3}$ (20 Marks)
- 6 a. Obtain the state space equation of a system whose differential equation is $\ddot{y} + 6\ddot{y} + 11\dot{y} + 6y = 3U$. Also, represent the state space model in the block diagram form.
 - b. Obtain the phase variable form of state model for the system whose differential equation is given by $\ddot{y} + 11\ddot{y} + 6\dot{y} + 20 = 8\ddot{u} + 6\ddot{u} + 3\dot{u} + 9u$, by signal flow graph method. (12 Marks)

- 7 a. Obtain the discrete time state space representation for the differential equation $\ddot{c} + 3\dot{c} + 2c = f(t)$, evaluate the resulting discrete time representation for a sampling period T = 0.3s.
 - b. The transfer function for a plant is $\frac{s+2}{s(s+1)}$, determine the characteristics of a digital controller such that the response of the system to a unit step function will be $c(t) = 5 (1 e^{-2t})$ the sampling period is T = 1.0 s. (12 Marks)
- 8 Write short notes on:
 - a. Controllability and observability of a system.
 - b. Corner frequency
 - c. Advantages of phase lead compensation.
 - d. Steady state and transient response.

(20 Marks)

* * * * *