2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

First Semester M.Tech. Degree Examination, January 2011 Finite Element Method

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions.

- a. Explain the steps involved in FEM, with suitable examples.
 b. Write a note on iso, sub and super parametric elements.
 (05 Marks)
 - c. List the various applications of FEM. (05 Marks)
- 2 a. What are the shape functions? Derive the shape function for 1 D linear element. (10 Marks)
 - b. Explain the convergence criterion. (04 Marks)
 - c. Write a note on simple, complex and multiplex elements. (06 Marks)
- 3 a. Determine the nodal displacement, stress in each element and the reaction forces at the support for the bar shown in Fig.Q.3(a) due to applied force P = 100 kN.

Take $E_{\text{steel}} = 200 \text{ GPa}$, $E_{\text{copper}} = 100 \text{ GPa}$. (12 Marks)

- b. Write a short note on stiffness matrix for the plane truss element.
- (08 Marks)
- 4 Consider the four bar truss shown in Fig.Q.4. It is given that $E = 2 \times 10^6 \text{ N/mm}^2$ and $A_e = 100 \text{ mm}^2$ for all elements.
 - i) Determine the element stiffness matrix for each element.
 - ii) Assemble the elemental stiffness matrix K for the entire truss.
 - iii) Using elimination approach solve for the nodal displacement.
 - iv) Calculate stress in each element.
 - v) Calculate the reaction forces.

(20 Marks)

Determine the nodal displacement using principle of minimum potential energy for the springs shown in Fig.Q.5(a). Take $F_1 = 75 \text{ N}$ and $F_2 = 100 \text{N}$. (10 Marks)

Fig.Q.5(a).

b. Find the displacement of the system shown in Fig.Q.5(b), using Galerkin method. (10 Marks)

- Explain in brief the parametric and the variational design in CAE. (06 Marks)
 - Write the 3D homogenized transformation matrices. (08 Marks)
 - Write a note on simulation based design. (06 Marks)
- Explain 3D transformation and 3D rotation of objects. (10 Marks)
 - b. For the polygon shown in Fig.Q.7(b) compute the following transformation and determine the new position of polygon:
 - Translate the polygon by 3 units in the x-direction and 2 units in y direction. i)
 - ii) Scale the polygon by factor = 2.
 - Rotate the polygon about the origin in the CCW by 45°. iii) (10 Marks)

Fig.Q.7(b).

- 8 Explain the various construction techniques and representation scheme used in solid modeling. (10 Marks)
 - Write short notes on: b.
 - Properties of Bezier curves. i)
 - ii) Plane and ruled surface creation.

(10 Marks)

2 of 2