USN

Second Semester M.Tech. Degree Examination, June/July 2014

Modern Control Engineering

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

Determine the transfer function $\frac{X(s)}{E_{s}(s)}$ for the system shown in Fig.Q1(a).

Fig.Q1(a)

- b. The transfer function of a closed loop system with unity feedback system is $\frac{K(s+2)(s+1)}{(s+0.1)(s-1)}$ Comment on stability.
- 2 Consider the system shown in Fig.Q2. Draw the locus of the poles of the overall system as K is varied from zero to infinity.

(20 Marks)

- Construct the Bode plot for a unity feedback control system having $G(s) = \frac{10(s+10)}{s(s+2)(s+5)}$ 3 From the plot obtain the gain margin and phase margin. Comment on the stability of the (20 Marks) system.
- Plot the general shapes of polar plots of the following transfer function indicating the magnitudes at $\omega = 0, \infty$.

i)
$$\frac{1}{(1+T_1j\omega)(1+T_2j\omega)}$$

ii)
$$\frac{1}{(1+T_1j\omega)(1+T_2j\omega)(1+T_3j\omega)}$$

iii)
$$\frac{1}{j\omega(1+T_1j\omega)(1+T_2j\omega)}$$

ii)
$$\frac{1}{(1+T_1j\omega)(1+T_2j\omega)(1+T_3j\omega)}$$
iv)
$$\frac{(1+T_2j\omega)}{j\omega(1+T_1j\omega)(1+T_3j\omega)}$$
1 of 2 (12 Marks)

b. Find the transfer function of a system whose approximate bode plot is shown in Fig.Q4(b). Assume no right half plane poles or zeros present.

5 The open loop transfer function of a closed loop control system is given by

$$G(s)H(s) = \frac{K(1+0.5s)(1+s)}{(1+10s)(s-1)}.$$

Sketch the Nyquist plot and find the range of K for which the system is stable. (20 Marks)

- Define system compensation, and explain the following system compensations with example:
 - i) Lead compensationii) Lag compensation

 - iii) Lag-Lead compensation

(12 Marks)

(08 Marks)

- Discuss state space analysis and explain clearly controllability and observability. (08 Marks)
- Obtain the state space representation of armature controlled DC motor. (10 Marks)
 - For the given transfer function,

$$\frac{Y(s)}{U(s)} = \frac{b_0}{a_0 s^3 + a_1 s^2 + a_2 s + a_3}.$$

Draw the signal flow graph and obtain the state model.

(10 Marks)

- Define filters and discuss the frequency response of a zero order hold filters. 8 а. (10 Marks)
 - b. The z transform for a digital control system is

$$C(z) = z \frac{(z+2)}{(z-1.0)(z+0.5)(z-0.2)}$$

Determine the inverse z transform.

(10 Marks)