

Fourth Semester B.E./B.Tech.Degree Examination, June/July 2024 Applied Thermodynamics

Time: 3 hrs.

6

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M : Marks, L: Bloom's level, C: Course outcomes.
3. Use of Steam tables and Thermodynamic data hand book is permitted.

		Module – 1	M	L	C
Q.1	a.	With usual notations obtain an thermal efficiency of otto cycle.	6	L2	CO1
	b.	Define Explosion ration and cut off ratio.	4	L1	CO1
	c.	In a air standard diesel cycle, the compression ratio is 16. At the beginning of	10	L3	CO1
		isentropic compression, the temperature is 15°C and pressure 0.1 MPa Heat is			
		added until the temperature at the end of the constant pressure process is			
		1480°C. Calculate (i) Cutoff ratio (ii) Heat supplied per kg of air			
		(iii) Cycle efficiency (iv) Mean effective pressure.			
		OR			
Q.2	a.	How Morse test will be carried on a 3 cylinder IC engine?	4	L1	CO1
	b.	Explain the process of combustion in CI engine.	6	L2	CO1
	c.	The following readings were recorded during a trial on a single cylinder 2 stroke diesel engine, power supplied by electric motor = 1.5 kW, rated speed = 500 rpm; net load on brake drum = 225 N; Diameter of brake wheel = 1000 mm; rate of cooling water = 13.65 kg/min ; Change in temperature of cooling water = 10 °C; Fuel consumption = 2 kg / hr ; Calorific value of fuel = 43000 kJ/kg ; AF ratio = 32 : 1; Specific heat of gases = 1.006 kJ/kg K ; Exhaust gas temperature = 345 °C; Ambient temperature = 25 °C and pressure 1 Bar. Considering a square engine of 30 mm bore and stroke length. Determine : (i) Mechanical efficiency (ii) Brake thermal efficiency (iii) Brake specific fuel consumption (iv) Brake mean effective pressure. Also draw the heat balance sheet on % basis.	10	L3	CO1
		Module – 2			
Q.3	a.	Derive an expression of air standard efficiency of Joule cycle.	6	L2	CO2
	b.	Enumerate the differences between open and closed cycle gas turbine.	4	L1	CO2
	c.	For an actual gas turbine cycle, show that the optimum pressure ratio for maximum net work output is given by $R_P = \left(\eta_C \eta_T \frac{T_3}{T_1}\right)^{\frac{\gamma}{(2(\gamma-1)}}$.	10	L3	CO2
11/22/01 100		OR			
Q.4	a.	Explain the working principle of jet propulsion.	3	L2	CO2
_	b.	How turboprop engine works explain clearly?	7	L2	CO2
	с.	A jet properied engine having 2 jets and working on a turbojet has a velocity of 210 m/s. When flying at an altitude of 12000 m. The density of air at this attitude is 0.172 kg/m^3 . The resistance of the plane is 6670.8 N and propulsive efficiency of the jet is 50%. The overall efficiency of the unit is 18%, calorific value of the fuel is $4.895 \times 10^4 \text{ kJ/kg}$. Calculate (i) Absolute velocity of jet (ii) Quantity of air compressed per min (iii) Diameter of jet (iv) Power O/P (v) Specific fuel consumption (vi) A : F ratio.	10	L3	CO2

BME401

		Module – 3	1									
Q.5	a.	With the help of neat sketch, explain the working of open feed water heater.	8	L2	CO3							
	b.	Steam from a boiler enters a turbine at 25 bar and expands to condenser	12	L3	CO4							
		pressure of 0.2 bar. Determine the rankine cycle efficiency by neglecting pump										
		work:										
		(i) When steam is 80% dry at turbine inlet.										
		(ii) When steam is saturated at turbine inlet.										
×		(iii) When steam is superheated at turbine inlet by 76.1°C										
		(iv) Represent above three processes on same TS diagram.										
	OR											
0.6	a.	Enumerate the difference between Carnot cycle and Rankine cycle.	4	L1	CO3							
	b.	Obtain an expression for air standard efficiency of Ranking cycle.	6	L2	CO3							
	c.	The steam is supplied to the turbine at a pressure of 32 bar and temperature of	10	L3	CO3							
		410°C. The steam then expands isentropically to a pressure of 0.08 bar. Find										
		the dryness fraction of steam at the end of expansion and thermal efficiency of										
		cycle. If the steam is reheated at 5.5 har temperature of 395°C and then expand										
		isentropically to 0.08 Bar. What will be the dryness fraction and thermal										
		efficiency of cycle?										
		Module – 4										
Q.7	a.	List out the desirable properties of refrigerant.	4	L1	CO4							
	b.	Derive an expression for COP of an refrigeration system.	6	L2	CO4							
	c.	Atmospheric air at a pressure of 1 Bar and temperature -5°C, is drawn in the	10	L3	CO4							
		cylinder of the compressor of Bell-Coleman refrigerating machine. The air is										
		compressed isentropically to a pressure of 5 Bar and cooled to 15°C in the										
		coder at constant pressure. It is then expanded to a pressure of 1 Bar in an										
		expansion cylinder from where it is passed to cold chamber. Calculate the work										
		done/kg of air and COP of the plant Assume the cycle with isentropic										
		compression with $y = 1.4$ and polytronic expansion with $n = 1.2$ C _x of air as										
		compression with $f = 1.4$ and porturple expansion with $n = 1.2$; ep of an as										
		TKJ/KgK.										
		OR OR										
Q.8	a.	Define (i) Sensible cabling (ii) Sensible heating	4	L1	CO4							
	b.	How cooling tower plays an important role in air conditioning system?	6	L2	CO4							
	c.	40 m ³ of air per minute at 31 °C DBT and 18.5 °C WBT is passed over the	10	L3	CO4							
		cooling coil whose surface temperature is 4.4°C. The coil cooling capacity is										
		3.56 Tonnes of refrigeration under the given condition of air. Determine the										
		DBT and WBT of the air leaving the cooling coil and by pass factor.										
	1	Soli and the control of the second se										
	1	Module – 5			-							
Q.9	a.	Why multistage compressors are preffered over a single stage compressor?	4	L2	CO5							
		Also list the advantages of multistage compressors.										
	b.	Define (i) Isothermal efficiency (ii) Adiabatic efficiency (iii) FAD	6	L1	C05							
	c.	A multistage compressor is to be designed to elevate the pressure from 1 Bar to	10	L3	C05							
		120 Bar such that the stage pressure ratio will not exceed 4. Determine										
		(i) Number of stages (ii) Exact stage pressure ratio (iii) Intermediate										
		pressure (iv) The minimum power required to compress 15 m ³ /min of free air.										
		Take $n = 1.2$										
		OP										
0.10		Define Critical pressure ratio also with usual notations derive aritical pressure	10	12	COF							
Q.10	a.	Define Critical pressure ratio, also with usual notations derive critical pressure	10	L2	005							
					-							
		2 01 5										
		A CONTRACT OF										
		Car										
		N N N N N N N N N N N N N N N N N N N										

5

BME401

b.	A turbine having a set of 16 nozzles receiver steam at 20 Bar and 400° C. The pressure of the steam at nozzle exit is 12 Bar. If the discharge rate is 260 kg/min and nozzle efficiency is 90%. Calculate the cross sectional area at the nozzle exit. If the steam has a velocity of 80 m/s at entry to the nozzle, find the % increase in discharge.	10	L4	CO5
	*****			*
	108° 57			
	5-2-5-			
	Stand Strand St			
	5			
	St Old St			
Ĝ	5- 08-2 55			
	V. S.			
	3 of 3			
ĉ				