

14MAR/MAU/IAE/MDE/MMD/MST/MTH/MTE/MTP/ MTR/MCM/MEA/CAE11

First Semester M.Tech. Degree Examination, June/July 2016 **Applied Mathematics**

JAK

Time: 3 hrs.

Max. Marks: 100

(10 Marks)

Note: Answer any FIVE full questions.

- Evaluate the sum $S = \sqrt{3} + \sqrt{5} + \sqrt{7}$ to four significant digits and find its absolute and 1
 - b. A parachutist of mass 68.1 kg jumps out a stationary hot air balloon. Use equation $v(t) = \frac{gm}{C} \left[1 - e^{-\left(\frac{C}{m}\right)t} \right]$ to compute velocity prior to opening the chutes. The drag coefficient is equal to 12.5 kg/s.
 - c. The Maclaurin's expansion for e^x is given by $e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{x^n}{n!} e^r$, find 'n' such that he sum yields the value of e^x correct to 8 decimal places at x = 1.(06 Marks)
- 2 Find a root of the equation $xe^x = \cos x$ correct to four decimal places by Regula – False method.
 - b. Discuss Newton Raphson method with the graph to find the root of the equation f(x) = 0. Use this method to find the root of the equation $X \log_{10}^{x} - 1.2 = 0$. Take the initial of x as 2. (10 Marks)
- Perform one iteration of the Bairstow method to extract a quadratic factor $x^2 + px + q$ from the polynomial $x^4 + x^3 + 2x^2 + x + 1 = 0$ using initial approximation p = 0.5, q = 0.5. 3
 - (10 Marks) b. Find all the roots of the polynomial $x^4 - x^3 + 3x^2 + x - 4 = 0$ using Graeffe's root squaring method, squaring thrice. (10 Marks)
- Calculate first and second derivatives of the function tabulated in the following table at the point x = 2.2 and also find $\frac{dy}{dx}$ at x = 2.0. (10 Marks)

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2
у	2.7083	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

- b. Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Romberg's method correct to four decimal places with h = 0.5, h = 0.25 and h = 0.125. (10 Marks)
- a. Solve the following system of equations by the Gauss Jordan method:

$$x_1 + x_2 + x_3 + x_4 == 2$$

$$2x_1 - x_2 + 2x_3 - x_4 = -5$$

$$3x_1 + 2x_2 + 3x_3 + 4x_4 = 7$$

$$x_1 - 2x_2 - 3x_3 + 2x_4 = 5$$

b. Find the inverse of the matrix
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$$
, using partition method. (10 Marks)

14MAR/MAU/IAE/MDE/MMD/MST/MTH/MTE/MTP/ MTR/MCM/MEA/CAE11

Using Jacobi method find all the eigen values and the corresponding eigen vectors of the

matrix $A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$. (10 Marks)

b. Reduce the matrix $\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 2 \\ -1 & 2 & 1 \end{bmatrix}$ into tridiagonal form using householder's transformation

and hence find its all eigen valu

(10 Marks)

- a. Define linear transformation, onto and one one transformation. IF $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear 7 transformation with A as the standard matrix for T, then prove that:
 - i) T maps Rⁿ onto R^m if and only if columns of A span R^m

ii) T is one - one if and only if columns of A are linearly independent.

(10 Marks)

b. Given $A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} u = \begin{bmatrix} 2 \\ -1 \end{bmatrix} b = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix} c = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$ and define the transformation

 $T: \mathbb{R}^2 \to \mathbb{R}^3$ by T(x) = AX

- i) Find T(u)
- ii) Find an X in \mathbb{R}^2 , T(X) = b
- iii) Is there more than one X, whose image under T is b?

iv) Determine if C is the range of transformation T.

(10 Marks)

Explain the Gram-Schmidt process of obtaining orthogonal basis for given basis $\{x_1, x_2, \dots, x_p\}$ for subspace W of \mathbb{R}^n and hence obtain orthonormal basis for $\{x_1, x_2, x_3\}$

where $X_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} X_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} X_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. (10 Marks)

b. Find a least square solution of the inconsistent system AX = b $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ and also determine least square error.

(10 Marks)