

Third Semester B.E./B.Tech. Degree Examination, June/July 2024 Mechanics of Materials

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	С
Q.1	a.	Define the following with necessary equations:	10	L1	CO1
		(i) Normal stress (ii) Shear stress (iii) Poisson's ratio			
		(iv) Young's modulus (v) Thermal stress			
	b .	The tensile test was conducted on a mild steel bar. The following was	10	L3	CO1
		obtained from the test:			
		Diameter of steel bar = 16 mm; Gauge length of the bar = 80 mm;			
		Load at proportionality limit = $/2$ kN; Extension at a load of			
		60 kN = 0.115 mm; Load at failure = $80 kN$; Final gauge length of $10 mm = 104 mm$			
		bar = 104 mm; Diameter of the bar at failure = 12 mm			
		(iii) True breaking strong (iv) Proportionality limit			
		(iii) The breaking stress (iv) recentage clongation			
2 2	1	(v) Tercentage decrease in area			
02	9	Write the relation between the following with usual notations and meaning:	06	I 1	COI
Q.2	a.	(i) Modulus of elasticity and bulk modulus	00		
		(i) Modulus of elasticity and modulus of rigidity			
		(iii) Modulus of elasticity, modulus of rigidity and bulk modulus			
	b.	Define the following:	04	L1	C01
~		(i) Gradual load (ii) Sudden load (iii) Impact load (iv) Shock load			
	c.	Rails laid such that there is no stress in them at 24°C. If the rails are 32 m	10	L3	CO1
		long, determine:			
		(i) The stress in the rails at 80°C, when there is no allowance for			
		expansion.			
		(ii) The stress in the rails at 80°C, when there is an expansion allowance of			
		8 mm per rail			
		(iii) The expansion allowance for no stress in the rails at 80°C.			
		Take $\alpha = 11 \times 10^{-6} / ^{\circ}$ C, E = 205 GPa.			
		Module – 2			
Q.3	a.	Derive the expression for normal stress and shear stress on a plane inclined	10	L2	CO2
L		at ' θ ' angle to the vertical axis in a biaxial stress system with shear stress.			
	b.	For the two-dimensional stressed element, shown in Fig.Q3(b), determine	10	L3	CO2
		the value of: (i) Maximum and minimum principal stress			
		(ii) Principal planes (iii) Maximum shear stress and its plane			
		Verify the answer's by Mohr's circle method			
		32MPa			
		32 MPa			
	I	Some Some			
		BOMPA			
		32 MD			
		Carl I a			
		T _{32MPa} Fig.Q3(b)			
	A commente	1 of 3			

4					BME301		
		OR			1.4		
Q.4	a.	Derive an expression for circumferential stress and longitudinal stress for a thin cylinder subjected to an internal pressure 'P'.	10	L2	CO2		
	b.	A thick cylinder of internal diameter 160 mm is subjected to an internal	10	L3	CO2		
-		fluid pressure of 40 N/mm ² . If the allowable stress in the material is					
		120 N/mm ² , find the required wall thickness of the cylinder.					
		Module – 3			ĸ		
Q.5	a.	Draw the shear force and bending moment diagrams for the cantilever shown in Fig.Q5(a).	10	L4	CO3		
		4 KN/m OCKN IOKN					
		B B					
		2 m 1 m 2 m					
		Fig.Q5(a)					
	b.	Draw the bending moment and shear force diagram for the overhanging	10	L4	CO3		
		beam shown in Fig.Q5(b). Clearly indicate the point of contraflexure.					
		20 KN/m 40 KN					
		A primm P B tc					
		âm âm 1m					
		Fig.Q5(b)					
		OR	10				
Q.6		A simply supported beam of 7m span with overhangs rests on supports	20	L4	CO3		
		which are 4m apart. The left end overhang is 2 m. The beam carries loads					
		of 30 kN and 20 kN on the left and the right ends respectively apart from a					
		uniformly distributed load of 25 kN/m between the supporting points. Draw					
		the shear force and bending moment diagrams. Locate point of					
		contratiexure if any.					
07		Module – 4	10	12	CO4		
Q./	a.	Derive the bending equation in the form of $\frac{1}{L} = \frac{0}{L} = \frac{1}{L}$.	10		04		
	h	1 I K	10	13	CO4		
	D.	A square beam 20 min \times 20 min in section and 2 milling is supported at the ends. The heam fails when a point load of 400 N is applied at the centre of	10		04		
		the beam What uniformly distributed load per metre length will break a					
		cantilever of the same material 40 mm wide. 60 mm deep and 3 m long?					
	1	OR	I				
Q.8	a.	Derive an expression for section modulus of solid rectangular and circular	10	L2	CO4		
		sections.					
	b.	Fig.Q8(b) shows the cross-section of a beam which is subjected to a shear	10	L3	CO4		
		force of 20 kN. Draw the shear stress distribution across the depth making					
	5	values at salient points.					
		100 mm					
		12 m m					
		88mm					
		$\operatorname{Fig.O8(b)}$					
		2 of 3	L	1	1		
L		A					

S

BME301

Module – 5						
Q.9	a.	Define the following with necessary equations: (i) Torque (ii) Polar modulus (iii) Torsional rigidity	06	L1	CO5	
	b.	State the assumptions made in theory of torsion.	04	L1	C05	
	c.	Derive torsion equation in the form of $\frac{T}{T} = \frac{\tau}{G\theta}$.	10	L2	CO5	
		J R L				
0.10	a.	Define the following:	10	L1	C05	
L		(i) Column (ii) Buckling load (iii) Slenderness ratio				
		(iv) Long column (v) Short column	10	TO	COF	
	b.	Derive an expression for Euler buckling load when both ends of the column	10	LZ	05	
		SHIPPAR BURGH SHIP SHIP SHIP				