METERIAL DEFT

M.Tech. Degree Examination, Dec.08/Jap.09

3

Linear Algebra

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions

1 a. Solve the following system of equations:

$$x+2y-3z=1$$

$$2x + 5y - 8z = 4$$

3x+8y-13z=7 by Gauss elimination method.

(06 Marks)

b. Reduce the following matrix:

$$\begin{bmatrix} 1 & 2 & -3 & 1 & 2 \\ 2 & 4 & -4 & 6 & 10 \\ 3 & 6 & -6 & 9 & 13 \end{bmatrix}$$
 to Row reduced Echelon form.

(06 Marks)

c. Find the LU factorization with $l_{ii} = 1$ for the matrix $A = \begin{bmatrix} 2 & 1 & 1 & -1 \\ 4 & 5 & 4 & -1 \\ -4 & 1 & 4 & 4 \\ 6 & -3 & 3 & 1 \end{bmatrix}$. (08 Marks)

2 a. Express M as a linear combination of the matrices A, B, C where

$$M = \begin{bmatrix} 4 & 7 \\ 7 & 9 \end{bmatrix}, A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 \\ 4 & 5 \end{bmatrix}$$

(06 Marks)

b. Prove that the set $W = \{(x,y,z)/x-3y+4z=0\}$ of the vector space $V_3(R)$ is a subspace of $V_3(R)$.

c. Prove that the inverse of two subspaces of a vector space V is a subspace of V. Is it true in the case of union of two subspaces? Justify your answer. (07 Marks)

3 a. If α , β , γ are linearly independent in V(F), prove that the vectors $\alpha+\beta$, $\alpha-\beta$, $\alpha-2\beta+\gamma$ are also linearly independent.

b. Prove that any two bases of a finite dimensional vector space V have the same number of elements. (06 Marks)

c. Let $T:U \rightarrow V$ be a linear map. Then prove that

- i) R(T) is a subspace of V.
- ii) N(T) is a subspace of U.
- iii) T is 1-1 iff the null space (N(T)) is a zero subspace.

(08 Marks)

4 a. Prove that $T:U \to V$ of a vector space U to a vector space V over the same field F is a linear transformation if and only if $\forall \alpha, \beta \in U$ and $C_1, C_2 \in F$

$$T(C_1 \alpha + C_2 \beta) = C_1 T(\alpha) + C_2 T(\beta)$$

b. Find the eigen space of the linear transformation

 $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

T(x, y, z) = (2x+y, y-z, 2y+4z)

(07 Marks)

(06 Marks)

c. Find the linear transformation relative to the bases,

B₁ = {(1,1),(-1,1)}, B₂ = {(1,1,1),(1,-1,1)(0,0,1)} given the matrix A_T =
$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -1 & 3 \end{bmatrix}$$
. (07 Marks)

- Verify Rank-nullity theorem for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined ι 5 T(x,y,z) = (x+y,x-y,2x+z). (06 Marks)
 - Let T be a linear transformation from a vector space U to a vector space V then T is non singular iff T is 1-1.
 - $T: \mathbb{R}^2 \to \mathbb{R}^2$ is given by T(x,y) = (4x 2y, 2x + y). Verify whether T is non singular. Also find its inverse. (07 Marks)
- Find all invariant subspaces of $A = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix}$ viewed as an operator on \mathbb{R}^2 . 6
 - Determine all possible Jordan canonical forms J for a linear operator T:V -> V whose characteristic polynomial $\Delta T = (t-2)^5$ and whose minimal polynomial $m(t) = (t-2)^2$.

- Find a least squares solution of the inconsistent system $\Delta X = b$ for $\Delta = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$, $b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$.
- Define an inner product space. Give one example. If V is an inner product space, then prove 7 that for any vectors α , β in $V \|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$.
 - Apply the Gram-Schmidt orthogonalization process to find an orthogonal basis and then an orthonormal basis for the subspace of \tilde{U} of R^4 spanned by $v_1 = (1, 1, 1, 1), v_2 = (1, 2, 4, 5),$ $v_3 = (1, -3, -4, -2).$ (07 Marks)
 - Find aQR factorization of $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ (07 Marks)
- Find the maximum and minimum value of $Q(x) = 9x_1^2 + 4x_2^2 + 3x_3^2$ subject to the constraint 8
 - Make a change of variable x = py that transforms the quadratic form $x_1^2 8x_1x_2 5x_2^2$ into a quadratic form with no cross product term.
 - Find a singular value decomposition of $A = \begin{vmatrix} -2 & 2 \\ 2 & -2 \end{vmatrix}$. (07 Marks)