

Third Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Mechanics of Materials

Time: 3 hrs.

Ger)

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. VTU Formula Hand Book is permitted. 3. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	State Hooke's law. Draw a neat diagram of stress-stain curve for mild steel	5	L2	CO1
		and mark the salient points and zones.			
	-				
	b .	Derive an expression for elongation in a tapered bar of circular cross-	7	L3	C01
		section, subjected to an axial tensile load "F".			
			0		GOI
	c.	A brass bar having uniform cross-section area of 300mm ² is subjected to a	8	L3	C01
		load as shown in Fig.1(c). Find the total elongation of bar and the			
		magnitude of load "P" if, $E = 84$ GPa.			
		P BOKN 20KN IOKN			
		500 1400 1000			
		Fig.Q.1(c)			
		11g.Q.1(c)			
OR					
Q.2	a.	Define the following: i) Poisons ratio ii) Bulk modulus iii) Factor of	5	L2	C01
		safety iv) True stress v) Hardness.		1000	
	b.	A bar of 20mm diameter is tested in tension. It is observed that when a load	7	L3	CO1
		of 37.7kN is applied, the extension measured over a gauge length of			
		200mm is 0.12mm and contraction in diameter is 0.0036mm. Find			
		Poisson's ratio and elastic constants E, G, K.			
	-	Gay Carl			0.04
	c.	A stepped bar is fixed at its two ends rigidly. The bar is free from stresses	8	L3	C01
	1	when its temperature is 30°C. When the temperature is increased to 90°C,			
	ALL THE	determine:			
	Participant -	 i) Stresses induced in copper and steel portions. ii) Displacement at the junction point "C". 			
		ii) Displacement at the junction point "C". Take $E_c = 100$ GPa, $E_s = 200$ GPa, $\alpha_c = 1.8 \times 10^{-5}$ /°C and $\alpha_s = 1.2 \times 10^{-5}$ /°C,			
		$A_s = 80 \text{ mm}^2$, $A_c = 120 \text{ mm}^2$.			
		$A_s = \text{solution}$, $A_c = 120\text{mm}$.			
		Steel Copper			
		0.3m 0.6m			
		. Fig.Q.2(c)			
1 of 3					

3 of 3