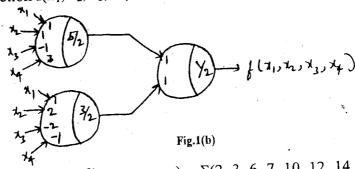
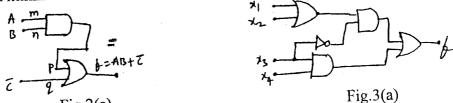


M.Tech. Degree Examination, Dec.09/Jan.10 **Digital Circuits & Logic Design**

Time: 3 hrs.


3 USN

Max. Marks:100


Note: Answer any FIVE full questions.

Explain the concept of threshold logic. 1

- (05 Marks)
- Determine the function $f(x_1, x_2, x_3, x_4)$ realized by the network shown in Fig.1(b). (06 Marks)

- Given the switching function $f(x_1, x_2, x_3, x_4) = \Sigma(2, 3, 6, 7, 10, 12, 14, 15)$. Find a minimal threshold logic realization.
- For the circuit shown in Fig.2(a), wires m, n, p & q may become either s-a-0 or s-a-1. Determine a minimal fault-detection experiment by means of fault table. 2

- Fig.2(a) What are critical and sub-critical errors? Determine the same for AND, OR, NAND, NOR & EX-OR gates. (05 Marks)
- With a net diagram, explain the basic structure of a quadded network.
- For the circuit shown in Fig.3(a), find all tests to detect the faults x₃, s-a-0 & x₃ s-a-1. 3
 - Use the map method to find a minimal set of tests for multiple faults for the two-level AND-OR realization of the function (10 Marks)

$$f(w, x, y, z) = w\overline{z} + x\overline{y} + \overline{w}x + w\overline{x}y$$
 (10 Marks)

For the m/c shown in Table 4(a), find the equivalence partition and a corresponding reduced m/c in standard form. NS Z

Table 4(a)

P.S.	No, Z		
	x = 0	x = 1	
Α .	F, 0	В, 1	
В	G, 0	A, 1	
С	B, 0	· C, 1	
D	C, 0	B, 1	
E	D, 0	A, 1	
F	E, 1	F, 1	
G	E, 1	G, 1	

b. Draw the merger graph and compatibility graph and determine the minimal closed covering for the m/c shown in Table 4(b). (10 Marks)

 010 1(0).					
P.S.	NS, Z				
	l_1	I ₂	I_3	I ₄	
A	-	-	E, 1	-	
В	C, 0	A, 1	B, 0	-	
С	C, 0	D, 1	-	A, 0	
D	-	E, 1	В, -	-	
E	B, 0	-	C, -	B, 0	

Table 4(b)

- 5 a. The m/c shown in Table 5(a) has the following closed partitions. $\pi_1 = \{\overline{ACE}; \overline{BDF}\}$, $\pi_2 = \{\overline{AF}; \overline{BE}; \overline{CD}\}$.
 - i) Find a state assignment which reduces the interdependencies of the state variables.
 - ii) Derive the logical equations and show the circuit diagram when unit delays are used as memory elements. (10 Marks)

Table 5(a)

P.S.	N	NS		
	x = 0	x = 1		
Α	D	С	1	
В	Α	D	0	
C	• B	E	0	
D	Е	В	0	
E	F	С	0	
F	С	D	0	

b. For the m/c shown in Table 5(b) find the π - lattice.

(10 Marks)

Table 5(b)

1.0,	[149		
	x = 0	x = 1	
Α	D, 0	C, 0	
В	C, 0	D, 1	
С	E, 0	F, 0	
D	F, 0	F, 1	
E	G, 0	Н, 0	
F	H, 0	G, 1	
G	В, 0	A, 0	
H	A, 0	B, 1	
		~	

6 a.

Table 6(a)

P.S.	N	S	2	7
	x = 0	x = 1	x = 0	x = 1
A	D	В	0	0
В	.A	С	1	0
С	В	E	1	0
D	F	A	0	1
Е	F	C	į 0	Ü
F	E	D	0	1

 $\begin{array}{c|c}
M_{a} \\
M_{b} \\
\end{array}$ Fig.6(a)

- i) Determine state assignment for the m/c shown in Table 6(a) so that it will have the structure shown in Fig.6(a).
- ii) Show the state diagram of the input-independent component.

(10 Marks)

b. F

P.S	x_1x_2	NS		Z
	$\begin{array}{c c} x_1x_2 \\ \hline 00 \end{array}$	01	10	1
Α	С	В	D	0
В	Α	E	С	0
С	E	В	D	. 0
D	C	C	E	0
E	Е	D	В	1

Determine the set of all Mm pairs for the machine shown in Table 6(b)

Table 6(b)

(10 Marks)

7 a. For the m/c shown in Table 7(a), determine the synchronizing tree and synchronizing sequence to synchronize the m/c to state D. (10 Marks)

P.S.	NS, Z		
	$\mathbf{x} = 0$	x = 1	
A	B, 0	D; 0	
В	A, 0	В, 0	
С	D, 1	A, 0	
D	D. 1	C. 0	

Table 7(a)

b. For the m/c shown in Table 7(b) construct the distinguishing tree. Obtain all possible distinguishing sequences. Write the response of m/c to the sequence 111. (10 Marks)

P.S.	NS, Z		
	$\mathbf{x} = 0$	x = 1	
A	C, 0	D, 1	
В	C, 0	A, 1	
С	A, 1	B, 0	
D	B, 0	C, 1	

Table 7(b)

8 a. Identify the m/c which is known to have two states and its response to the i/p sequence X is the o/p sequence Z, as shown below:

Time:	t_1	t_2	t_3	t ₄	t_5	t_6	t ₇	t_8
X :	1	1	1	0	1	0	1	
Z :	0	1	0	0	1	0	0	

(10 Marks)

b. What is a diagnosable sequential m/c? Construct testing table and graph for the m/c shown in Table 8(b).

P.S.	NS, Z		
	x = 0	x = 1	
Α	B, 0	D, 0	
В	A, 0	В, 0	
C	D, 1	A, 0	
D	D. 1	C. 0	

Table 8(b)