

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Mechanics of Materials

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	Μ	L	С				
Q.1	a.	Explain the following :	6	L2	CO1				
		i) Elasticity							
		ii) Ductility							
		iii) Hooks law							
		iv) Poisons Ratio							
		v) Hardness							
		vi) Young modulus of elasticity.							
la se	b.	Explain the salient points on a stress strain diagram for a ductile material	6	L2	CO1				
		(Mild steel)							
	c.	A member ABCD is subjected to point load a shown in Fig. Q1(c)	8	L3	CO1				
		calculate:							
		i) Force 'P' necessary for equilibrium							
		ii) Total elongation of the bar. Take $E = 210 \text{GN/m}^2$.							
		2400mm2 1200mm2							
		2 DOKN							
		600 mm 500 KN -> 200 KM							
		50KN P 2							
		A P							
		A B (1500mm)	2						
		1. 800mm 1 1000 mm K (300 mg X			_				
			•						
		Fig Q1(c)							
OR									
Q.2	a.	Derive the equation for the elongation of a circular bear with uniformly	6	L2	CO1				
	/000	tapering section under axial load 'P'.							
	Canona A								
	b .	Derive a relation between Young's modulus and rigidity modulus.	6	L2	CO1				
		A second s							
	c.	A steel rod of 4m long and 20mm diameter is subjected to an axial tensile	8	L3	CO1				
		load of 40kN. Determine the change in length, diameter and volume of rod.							
		Take $E = 2 \times 10^5$ N/mm ² and Poison's ratio is 0.25.							
		Allensis							
Module – 2									
Q.3	a.	Find the expression for normal and tangential stress for the member	10	L3	CO1				
		subjected to direct stress on two mutually perpendicular directions.							

BMR401

2 of 3.

BMR401

		Module – 4			
Q.7	a.	What are the assumptions made in simple bending? Establish relationship between bending stress, moment and radius of curvature as $\frac{M}{I} = \frac{\sigma}{Y} = \frac{E}{R}$.	12	L3	CO3
	b.	A simply supported beam has a length of 4m carries uniformly distributed load of 8kN/m. over its entire span. The beam cross section is T-section as show in Fig Q7(b). Calculate the maximum tensile and compressive stress in the section.	8	L4	CO3
		OR			
Q.8	a.	Prove that in a rectangular cross section, maximum shear stress at the neutral surface is 1.5 times the average shear.	12	L3	CO3
	b.	A beam of an I section $200 \text{mm} \times 300 \text{mm}$ has web thickness 10mm and flange thickness of 10mm. If carries a hearing force of 10kN at a section. Sketch the shear stress distribution across the section.	8	L4	CO:
A		Module – 5			
Q.9	a.	Derive the torsion equation. What are the assumptions made in torsion equation?	12	L3	CO4
	b.	A solid shaft is subjected to a maximum torque of 25kN-m. Find a suitable diameter of solid shaft, if the allowable shear stress and the angle of twist are limited to 80 N/mm ² and 1° respectively for a length of shaft 20 times the diameter of shaft. Assume rigidity modulus G = 80 kN/mm ² .	8	L4	CO ²
		OR			
Q.10	a.	Derive the expression for Euler's crippling load for a column when both ends are fixed.	12	L3	CO4
ŭ	b.	A solid round bar of 60mm diameter and 2.5m is used as a strut. Find the safe compressive load for the strut. If i) both ends are hinged ii) both ends are fixed. Take Young's modulus $E = 2 \times 10^5 \text{N/mm}^2$ and FOS = 3.	8	L4	CO
	L	****			1
		3 of 3			
	,				
	R				