USN		05SCS11/05SCE11				

First Semester M.Tech Degree Examination, Dec. 07 / Jan. 08 **Computer Architecture**

Max. Marks:100 Time: 3 hrs.

Note: Answer any FIVE full questions.

- a. Explain the operations of Flynn's classification of computer architecture. (10 Marks)
 - b. Distinguish between multiprocessors and multi-computers based on their structures, resources sharing and interprocessor communications. (10 Marks)
- a. Discuss the various dependencies that can cause problems to the smooth flow of 2 instructions through pipelines, with examples.
 - b. What is instruction scheduling? Discuss the different ILP instruction scheduling schemes. (10 Marks)
- a. What is the role of rename registers in super scalar processing? Explain with an example. 3 (10 Marks)
 - b. Explain the importance of preserving sequential consistency in superscalar processors. (10 Marks)
- Explain the BTAC and BTIC branch target accessing schemes. In what way they differ? 4 (10 Marks)
 - b. What is shelving? Explain the principle of shelving in superscalar processors. (10 Marks)
- 5 a. A certain dynamic pipeline with 4 stages is characterized by the following reservation table:

		t_0	t_1	t_2	t ₃	t ₄	t ₅	t ₆
	S1	X					X	
Stages	S2			X				X
143	S3		X		X			
	S4			X		X		

Obtain the collision vector, state transition diagram, forbidden latencies, simple cycles, greedy cycles and MAL. (10 Marks)

- b. Distinguish between linear pipelining and non-linear pipelining. Derive the expressions for speedup, efficiency and throughput for linear pipelines. (10 Marks)
- a. With a block diagram, explain a pipeline unit for fixed-point multiplication of 8-bit 6 (10 Marks)
 - b. Write a block diagram and explain with an example the operation of a data flow (10 Marks) computers.
- a. Draw a 8×8 Omega network using 2×2 switches. From your network, show the following 7 simultaneous connections between input and output:

i/p: 04367521 o/p: 67043125

Is the network blocked? If it is blocked, how can you resolve the conflict? (10 Marks)

- b. Explain the systolic architecture for matrix multiplication. (10 Marks)
- a. How bus snooping can be used to avoid the cache coherence? What are the demerits of this 8 (10 Marks) strategy?
 - b. Write short notes on: i) VLIW architecture ii) Architecture of Power PC 620. (10 Marks)