

First Semester M.Tech. Degree Examination, December 2011 Advances in Digital Image Processing

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

1 a. Explain any two fields that use digital image processing.

(08 Marks)

- b. Consider the two image subsets S_1 and S_2 shown in the following Fig. Q1(b). For $v = \{1\}$, determine whether these two subsets are
 - i) 4 adjacent
- ii) 8-adjacent
- iii) m-adjacent.

(06 Marks)

	S_1				S_2				
0	0	0	0	0	0	0	1	1	0
1	0 0	0	1	0	0	1	0	0	1
1	0	0	1	0	1	1	0	0	0
0	0	1	1	0 0 0 1	0	0	0	0	0
0	0	1	1			0		1	1
Fig. Q1(b)									

- c. Briefly explain the following:
 - i) Webers ratio
 - ii) Image analysis
 - iii) Brightness adaptation and discrimination.

(06 Marks)

- 2 a. Discuss how arithmetic/logic operators involving images are performed on a pixel bypixel between two or more images. (10 Marks)
 - b. What is the prominent advantage of piecewise linear transformation functions? List and explain in detail, the different piecewise linear transformation functions. (10 Marks)
- 3 a. Derive and explain the two dimensional discrete Fourier transform and its inverse. (10 Marks)
 - b. Using illumination-reflectance model develop a frequency domain procedure for improving the appearance of an image by simultaneous gray level range compression and contrast enhancement. (10 Marks)
- 4 a. Discuss in detail, the important noise probability density functions found in image processing applications. (10 Marks)
 - Explain in brief, the three principal ways to estimate the degradation function for use in image restoration.
 (10 Marks)
- 5 a. Explain in detail, the geometric interpretation of the intensity-slicing technique in pseudocolor image processing. (05 Marks)
 - b. Explain the RGB color model with a schematic diagram. Also explain the conversion of colors from RGB to HSI. (10 Marks)
 - c. Compute the:
 - i) Haar transform of the 2×2 image

$$\mathbf{F} = \begin{bmatrix} 3 & -1 \\ 6 & 2 \end{bmatrix}$$

ii) The inverse Haar transform is $F = H^{-1}TH^{-1}$ where T is the Haar transform and H^{-1} denotes the matrix inverse of Haar transformation matrix H. Find H_2^{-1} for Haar transformation matrix H₂ and use it to compute the inverse Haar transform of the result in (i). (05 Marks)

10SCS151

- 6 a. Explain in detail, a general compression system model. (08 Marks)
 - b. Explain the Lossless predictive coding technique, with neat diagram and expressions.

(06 Marks)

- c. Consider an 8-pixel line of gray scale data {12, 12, 13, 13, 10, 13, 57, 54} which has been uniformly quantized with 6-bit accuracy. Construct its 3 bit IGS code. (06 Marks)
- 7 a. Discuss with neat diagram, the important operations opening and closing in morphological image processing. (10 Marks)
 - b. Explain the boundary extraction and region filling in morphological algorithms. (10 Marks)
- 8 Write short note on:
 - a. Sampling and quantization
 - b. Video compression techniques
 - c. Object recognition
 - d. Thresholding.

(20 Marks)

* * * * 1