USN							
	<u> </u>	 	L	 			

Second Semester M.Tech. Degree Examination, June/July 2014 Formal Models in Computer Science

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.

- 1 a. Use 7, →, ∧ and ∨ to express the following declarative sentences in propositional logic, in each state what are your respective propositional atoms P, Q etc.:
 - i) My sister wants a white and black cat.
 - ii) Today it will rain or shine, but not both.

(06 Marks)

b. Prove $(p \land q) \rightarrow r, r \rightarrow s, q \land \neg s \vdash \neg p$ is valid.

(07 Marks)

c. Show $(P \land Q) \lor (P \land \neg Q) \equiv P$ (Note: \neg is negation).

(07 Marks)

- 2 a. Use mathematical induction to show that 1 + 2 + n = n(n + 1) / 2 for all natural numbers n ≥ 1 and also comment with respect to propositional logic.
 (08 Marks)
 - b. State HORN formula of propositional logic and also prove

$$(p \land q \land w \to \bot) \land (t \to \bot) \land (r \to p) \land (T \to r) \land (T \to q) \land (u \to s) \land (t \to u).$$
 (12 Marks)

- 3 a. Find appropriate predicate and their specification to translate the following into predicate logic:
 - i) All red things are in the box.
 - ii) Only red things are in the box.
 - iii) No animal in both a cat and a dog.
 - iv) Evenry prize was won by a boy.
 - v) A boy won every prize.

(10 Marks)

b. Write proof rules universal quantification in brief.

(03 Marks)

- c. Write the parse tree of a predicate logic formula and illustrate free and bound occurrences of variables and also use the substitution to solve the $(\forall x \ (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y)))$ (Note: \neg is negation). (07 Marks)
- 4 a. Explain the terms mode, term backus Naur, modes Tollens and modus proties. (05 Marks)
 - b. Prove the validity of the following sequent's in predicate logic, where F, G, P and Q have arity 1, and S has arity 0 (a 'propositional atom'):

$$\forall x (P(x) \land Q(x)) \vdash \forall x P(x) \land \forall x Q(x).$$

(10 Marks)

c. Write short note on alloy and micro models of software.

(05 Marks)

5 a. Explain linear-time temporal logic and syntax of LTL.

(05 Marks)

- b. Explain synchronous and asynchronous of mutual exclusion using SMV and NUSMV with help of a suitable code. (10 Marks)
 - c. Write the parse trees for the LTL formulas

$$Fp \wedge Gq \rightarrow pWr$$

$$F(p \rightarrow Gr) \lor \neg qUp$$

Note: (\neg is negation).

(05 Marks)

- 6 a. Discuss the important equivalences between CTL formulas.
 b. What is CTL? Give syntax.
 (06 Marks)
 (08 Marks)
 - b. What is CTL? Give syntax. (08 Marks)
 c. Explain CTL mode-checking algorithm with help of pseudo-code. (06 Marks)
- 7 a. Why should we verify and specify, convert the informal description R of requirements of an
 - application domain into an equivalent formula ϕ_R of some symbolic logic. (08 Marks) b. Define Hoare Triples. (05 Marks)
 - c. Show that $\vdash_{par} (|y=5|) x = y + I (|x=6|)$ is valid using proof rule for assignment and implication on required. (07 Marks)
- 8 a. Why is Z-notation important? Discuss different aspects and benefits. (05 Marks)
 - b. What is schema? Explain the structure of schema, its various forms; its uses declaration etc with specific examples. (10 Marks)
 - c. Give the syntax of qualified expressions in the z-notation. (05 Marks)

* * * * *