

Second Semester M.Tech. Degree Examination, June/July 2013 Formal Models in Computer Science

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Define what are declarative sentences.

(02 Marks)

- b. For the declarative sentences below, discuss how are they capable of being declared 'true' or 'false':
 - i) The sum of the numbers 3 and 5 equals 8.
 - ii) Jane reacted viotently to Jack's accusations.
 - iii) Every even natural number >2 is the sum of two prime numbers.
 - iv) All martians like pepperoni on their pizza.

(08 Marks)

- c. Prove that $2^n \ge n + 12$ for all natural numbers $n \ge 4$ using mathematical induction. Is the statement true for any n < 4? (10 Marks)
- 2 a. Construct a formula in CNF based on each of the following truth tables:

(10 Marks)

i)	p	q	ф 1
	T	T	F
	F	T	F
	T	F	F
	F	F	T

ii)	p	q	r	\$ 2
35	T	T	T	T
,	T_{\perp}	T	F	F
	T	F	T	F
/ (F	Τ	Т	T
	T	F	F	F
	·F	Т	F	F
	F	F	T	T
	F	F	F	F

iii)	r	S	q	ф3
	T	T	T	F
	T	T	F	T
	T	F	T	F
	F	T	T	F
	Т	F	F	T
	F	T	F	F
	F	F	T	F
	F	F	F	T

b. Write the algorithms CNF, NNF and IMPL – FREE.

(06 Marks)

- c. Apply the Horn algorithm on the following formula and state if it is satisfiable or not. $(p \land q \land w \rightarrow \bot) \land (t \rightarrow \bot) \land (r \rightarrow p) \land (T \rightarrow r) \land (T \rightarrow q) \land (u \rightarrow s) \land (T \rightarrow u)$ (04 Marks)
- 3 a. Define the following in predicate logic: i) Terms ii) Formulas iii) Free and bound variables.
 (06 Marks)
 - b. Translate the following into predicate logic:
 - i) Every student is younger than some instructor.
 - ii) Not all birds can fly.
 - iii) No animal is both a cat and a dog.

(06 Marks)

- c. Let ϕ be $(\forall x(p(x) \land Q(x))) \rightarrow (\neg p(x) \lor Q(y))$
 - i) Draw the parse tree of ϕ .
 - ii) Identify all bound and free variables leaves in ϕ .

(08 Marks)

- 4 a. Prove the validity of the following sequents:
 - i) $\forall x \forall y P(x, y) \vdash \forall u \forall v P(u, v)$
 - ii) $\exists x \forall y P(x, y) \models \forall y \exists x P(x, y)$

(08 Marks)

b. Define a model in predicate logic.

(04 Marks)

c. Explain the model of a software package dependency system and express the components as a signature in alloy. (08 Marks)

5 Explain the classification criteria for approaches to verification.

(10 Marks)

Consider the following model below:

(04 Marks)

Verify that $G(req \rightarrow F busy)$ hold in all initial states.

Fig. Q5 (b)

Explain what is LTL? Define the syntax and semantics of LTL.

(06 Marks)

- 6 What is computation tree logic? Define the CTL formulas in BNF. a. (04 Marks)
 - Write the syntax of CTL*. Describe LTL and CTL as subsets of CTL* and draw a figure to b. show the relationships among the expressive powers of CTL, LTL and CTL*. (10 Marks)
 - Write a note on new symbolic model verifier. c.

(06 Marks)

- With an example, explain what are program variables and logical variables. 7 (10 Marks)
 - Prove the validity of the sequent $|-p_{ar}(T)P(|Z = min(x,y)|)$, where mm(x,y) is the smallest number of x and y. e.g. min(7, 3) = 3 and the code of P is given by,

if(x > y) { z = y; } else { z = x;

- 8 Write short notes on the following:
 - Formal methods. a.
 - b. CICS experience.
 - The z notation. c.
 - The importance of proof. d.