## Second Semester M.Tech. Degree Examination, June/July 2013 **Advanced Algorithms**

Time: 3 hrs. Max. Marks: 100

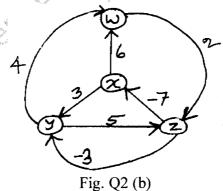
Note: Answer any FIVE full questions.

Define the asymptotic notations  $0, \theta, \Omega$ .

(03 Marks)

b. Using the master method, solve the following recurrences:

i) 
$$T(\mathbf{n}) = 8T\left(\frac{n}{2}\right) + \theta(n^2)$$


ii) 
$$T(n) = T\left(\frac{2n}{3}\right) + 1$$

iii) 
$$T(n) = 3T(\frac{n}{4}) + n \lg n$$

(09 Marks)

+ Cn<sup>2</sup> and indicate the running time Draw a recursion tree for the recurrence, T(n) = 3Tfor the same. (08 Marks)

- Write Bellman-Ford algorithm for solving single-source shortest-paths problem, also indicate the running time of the same. (06 Marks)
  - Compute all-pairs shortest-paths for the following directed graph using Johnson's algorithm. (14 Marks)



- Write and explain recursive Fast Fourier Transform (FFT) procedure for evaluating a polynomial. (08 Marks)
  - Write the Euclid's and extended Euclid's algorithm for computing gcd. Compute gcd (99,78) using the extended Euclid's algorithm, showing the computation steps at each level of recursion. (12 Marks)
- Apply Chinese remainder theorem to compute solution to the equations,  $a \equiv 2 \pmod{5}$

 $a \equiv 3 \pmod{13}$ (10 Marks)

Write and describe the procedure followed to create public and secret keys in RSA publickey cryptosystem. (10 Marks)

## **12SCS22**

- 5 a. Write the naivestring-matching algorithm. Show the operation of the same, for the pattern P = aab and the text T = acaabc. Also indicate the worst-case running time. (10 Marks)
  - b. Explain string matching with finite automata. Write state-transition diagram and transition function  $\delta$ , for the string-matching automation that accepts all strings ending in the string ababaca. (10 Marks)
- 6 a. Working modulo q = 11, how many spurious hits does the Rabin-Karp matcher encounter in the text T = 3141592653589793 when looking for the pattern P = 26?
  - b. Compute the prefix function  $\pi$  for the pattern ababbabbabbabbabbabbabbabbab in the alphabet  $\{a,b\}$  for Knuth-Morris-Pratt algorithm. (10 Marks)
- 7 a. Explain randomizing deterministic algorithms taking linear search algorithm as an example.
  (10 Marks)
  - b. Explain Monte Carlo and Las Vegas algorithms with appropriate examples. (10 Marks)
- **8** Write short notes on the following:
  - a. Potential method.
  - b. Ford Fulkerson method.
  - c. Maximum bipartite matching,
  - d. Representation of polynomials.

(20 Marks)

2 of 2