

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Electromagnetics Theory

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	С
Q.1	a.	State and explain spherical coordinate system in detail.	5	L2	C01
	b.	Four point charges each of 10 μ C are placed in free space at the points (1, 0, 0), (-1, 0, 0), (0, 1, 0) and (0, -1, 0) m respectively. Determine the force on a point charge of 30 μ C located at a point (0, 0, 1) m.	8	L3	CO1
	c.	Show that electric field intensity at a point, due to 'n' number of point charges, is given by, $E = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{n} \frac{Q_i}{R_i^2} a_{R_i} V/m$	7	L3	CO1
		OR CAN			
Q.2	a.	Define electric field intensity. Derive the expression for electric field intensity due to infinite line charge.	9	L1	C01
	b.	 Given the two points A(ρ = 4.4, φ = -115°, Z = 2) and B(x = -3.1, y = 2.6, z = -3), find (i) The rectangular coordinate of point A (ii) The cylindrical coordinate of point B (iii) The distance between A and B. 	5	L3	CO1
	c.	Find E at P(1, 5, 2) m in free space if a point charge of 6 μ C is located at (0, 0, 1), the uniform line charge density $\rho_L = 180$ nC/m along x axis.	6	L3	CO1
		Module – 2	-	13	001
Q.3	a.	State and prove Gauss's law for point charge.	6	L3	CO2
	b.	Calculate the divergence of D at the point specified if, (i) $D = (2xyz - y^2)a_x + (x^2z - 2xy)a_y + x^2ya_z C/m^2 \text{ at } P_A(2, 3, -1)$ (ii) $D = 2\rho Z^2 \sin^2 \phi a_\rho + \rho Z^2 \sin 2\phi a_\phi + 2\rho^2 Z \sin^2 \phi a_z C/m^2 \text{ at}$ $P_B(\rho = 2, \phi = 110^\circ, Z = -1)$ (iii) $D = 2r \sin \theta \cos \phi a_r + r \cos \theta \cos \phi a_\theta - r \sin \phi a_\phi C/m^2 \text{ at}$ $P_C(r = 1.5, \theta = 30^\circ, \phi = 50^\circ)$	9	1.3	02
	c.	Find electric field intensity at the point A(1, 2, -1) given the potential $V = 3x^2y + 2y^2z + 3xyz$	5	L3	CO2
	_	OR			
Q.4	a.	Evaluate both sides of divergence theorem if $D = \frac{5r^2}{4}a_rC/m^2$ in spherical co-ordinate for the volume enclosed by $r = 4$ m and $\theta = \frac{\pi}{4}$ radians.	8	L3	CO2
	1	Allende		I	

1 of 3

~ 1

BEC401

	b.	Calculate the work done in moving a charge 4C from B(1, 0, 0) to A(0, 2, 0) along the path $y = 2 - zx$, $z = 0$ in the field (i) $E = 5a_x V/m$ (ii) $E = 5xa_x V/m$	6	L3	CO2
	0	(iii) $E = 5xa_x + 5ya_y V/m$ Electrical potential at an arbitrary point in free space is given as,	6	L3	CO2
	c .	$V = 2(x+1)^2 (y+2)^2 (z+3)^2 \text{ volt at a point } P(2, -1, 4).$			
		Find (i) V (ii) E (iii) $ E $ (iv) $ D $ (v) ρ_v			
		Module – 3			
Q.5	a.	Evaluate the expression for capacitance of two uniformly charged parallel	8	L2	CO3
	b.	Determine whether or not the potential equations satisfies Laplaces equation : (i) $V = 2x^2 - 4y^2 + z^2$ (ii) $V = \phi \cos \phi + z$ (iii) $V = r^2 \cos \phi + 0$	5	L3	CO3
	c.	(iii) $V = 1 \cos \varphi + 0$ An assembly of two concentric spherical shell is considered. The inner spherical shell is at a distance of 0.1 m and is at a potential of 0 volts. The outer spherical shell is at a distance of 0.2 m and at a potential of 100 V. The medium between them is a free space. Find E and D using spherical co-ordinate system.	7	L3	CO3
		OR Discribing to the magnetic field	6	L2	CO3
.6	a.	State and explain Biot-Savarts law applicable to magnetic field. $H = 6xya = 3y^2a A/m$	8	L3	CO3
	b.	Evaluate both sides of the stokes theorem for the field, $H = 0xya_x - 5y - 4y^2 H H$ and the rectangular path around the region, $2 \le x \le 5$, $-1 \le y \le 1$, $Z = 0$. Let the positive direction of ds be a_z .			
	c.	Let $A = (3y - z)a_x + 2xza_y$ wb/m in a certain region of free space.	6	L3	CO:
		(i) Show that $\nabla A = 0$ (ii) At P(2, -1, 3) find A, B, H and J.			
	-	Module – 4	10	T 1	CO
2.7	a.	Obtain the expression for magnetic force between differential current elements.	6		CO.
	b.	The point charge $Q = 18nC$ has a velocity of $5 \times 10^{\circ}$ m/s in the direction			
		$a_v = 0.60a_x + 0.75a_y + 0.30a_z$. Calculate the magnitude of loree excited on the			
		charge by the field.			
		(1) $B = -3a_x + 4a_y + 6a_z m T$			
		(ii) $E = -3a_x + 4a_y + 6a_z KV/m$	0	12	CO
	c.	The magnetization in a magnetic material for which $\chi_m = 8$ is given in a certain	0	Lo	
	G	region as $150 Z^2 a_x A/m$. At Z = 4 cm, find the magnitude of,			
		i) J_T ii) J iii) J_b .			
		OR			
Q.8	a	. Obtain the magnetic boundary conditions at interface between two different magnetic material.	8	L2	CO
	b	. Two differential current elements $I_1dI_1 = 10^{-4}a_zAm$ at $P_1(1, 0, 0)$ and $I_2dI_2 = 3 \times 10^{-6} (-0.5a_x+0.4a_y+0.3a_z)$ Am at $P_2(2, 2, 2)$ are located in free space. Find the vector force exerted on, (i) I_2dI_2 by I_1dI_1 (ii) I_1dI_1 by I_2dI_2	6	L3	CO
		2 of 2:			
		2 of 3			
		- Company			

BEC401

	с.	The interface between two different regions is normal to one of three Cartesian axes. If $B_1 = \mu_0(43.5a_x + 24.0a_z)$ and $B_2 = \mu_0(22a_x + 24a_z)$. What is the ratio	0	L3	C04
		$\frac{\tan \theta_1}{\tan \theta_2}$?			
			_	_	
0.0		$\frac{Module - 5}{10^{-9}E/m}$	6	L3	C05
Q.9	a.	For the given medium $\varepsilon = 4 \times 10^{-4}$ F/m and $\sigma = 0$, Find K so that the following pair of fields satisfies Maxwell's equation, $E = (20y - Kt)a_x V/m$, $H = (y+2\times 10^6 t)a_z A/m$.			
	b.	Within a certain region $\varepsilon = 10^{-11}$ F/m and $\mu = 10^{-5}$ H/m,	8	L3	C05
		If $B = 2 \times 10^{-4} \cos 10^5 t \sin 10^{-3} y T$; (i) Find E (ii) Find total magnetic flux passing through the surface $x = 0, 0 < y < 40$ m,			
		(ii) Find total magnetic max passing through the passing $t = 1 \mu \text{sec.}$			
	c.	State and explain pointing theorem.	6	L2	CO5
		OR	5	L2	COS
Q.10	a. b.	Derive the modified Ampere's law by Maxwells for time varying fields. Show that the intrinsic impedance of the perfect dielectric $\eta = \frac{ E }{ H } = \sqrt{\frac{\mu}{\epsilon}}$ and	7	L2	CO5
		1 what its uphus in free space is 377.0	2		
	c.	A plane electromagnetic wave having a frequency of 10 MHz has an average pointing vector of 1 W/m ² . If medium is lossless with relative permeability of 2 and relative permittivity of 3 find (i) The velocity of propagation. (ii) Wavelength.	8	L3	COS
		(iii) Impedance of the medium (iv) rms electric field.			
		(iii) Impedance of the medium (iv) rms electric field.			