

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Control Systems

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	С
Q.1	a.	Define Control system. Write down any four differences between Open Loop Control System and Closed Loop Control System.	4	L2	CO1
	b.	For the mechanical system shown in Fig. Q1(b), obtain the equivalent electrical system using Force – Voltage method. Fig. Q1(b) Fig. Q1(b) M_1 K_{FC+}	8	L2	CO1
	c.	For the mechanical system, shown in Fig. Q1(c), obtain the equivalent electrical system using Force – Current method. Fig. Q1(c) $Fig. Q1(c)$ $Fig. Q1(c)$	8	L2	CO1
		OR			
Q.2	a.	For the mechanical system shown in Fig. Q2(a), obtain the equivalent electrical system using Force – Voltage method. Fig. Q2(a) Fig. Q2(a) K_1 K_2 K_2 K_3 K_3 K_3 K_3 K_2 K_3 K_3 K_2 K_3 K_3 K_2 K_3 K_3 K_2 K_3 K_3 K_2 K_3 K_2 K_3 K_3 K_2 K_3 K_3 K_2 K_3 K_3 K_2 K_3 K_3 K_2 K_3 K_3 K_2 K_3 K_3 K_2 K_3 K_2 K_3 K_2 K_3 K_3 K_2 K_3 K_3 K_2 K_3 K_2 K_3 K_3 K_2 K_3 K_2 K_3 K_3 K_2 K_3 K_2 K_3 K_3 K_2 K_3	7	L2	CO1

		OR			
Q.4	a.	Reduce the block diagram to its canonical form and obtain $C(s)/R(s)$ of the system of Fig. Q4(a). Fig. Q4(a) $Fig. Q4(a)$ $Fig. Q4(a)$ $Fig. Q4(a)$	6	L3	CO3
	b.	Obtain the transfer function of the single flow graph shown in Fig. Q4(b), using Mason's gain formula. Fig. Q4(b) Fig. Q4(b) Fig. Q4(b)	6	L3	CO3
	c.	Reduce the block diagram of Fig. Q4(c) to its simple form and obtain $C(s)/R(s)$. Fig. Q4(c)	8	L3	CO3
		Module – 3			
Q.5	a.	With the help of graphical representation and mathematical expression, explain the following test signals : i) Step signal ii) Ramp signal iii) Impulse signal iv) Parabolic signal.	8	L3	CO2
	b.	Find Kp , Kv , Ka and steady state error for a system with Open loop transfer function $G(s) H(s) = \frac{10(s+2)(s+3)}{s(s+1)(s+4)(s+5)}$, where $r(t) = 3 + t + t^2$.	6	L3	CO2
	c.	The Open loop transfer function of a servo system with unity feedback is given as $G(s) = \frac{10}{s(0.1s+1)}$. Find out static error constants and obtain steady state error when an input $r(t) = A_0 + A_1t + \frac{A_2}{2}t^2$ is applied.	6	L3	CO2
	1	OR	10	L2	CO3
Q.6	a.	For a unity feedback control system with $G(s) = \frac{64}{s(s+9.6)}$, write the output response to a unit step input. Determine 1) The response at t = 0.1 set 2) Maximum value of response and the time at which it occurs. 3) Settling time.	10		

		For the system shown in Fig. Q6(b), 1) Identify the type of C(s) / E(s) 2) Find values of Kn. Ky. Ka.	10	L2	CO3
		3) If $r(t) = 10u(t)$, find steady state value of the output.			82
		Fig. Q6(b) $E(s)$ $E(s)$ 10 $c(s)$ $s^2(s^2+s+10)$ $c(s)$			
Q.7	a.	Module – 4 Find the number of roots with positive real part, zero real part and negative real part for a system $s^6 + 4s^5 + 3s^4 - 16s^2 - 64s - 48 = 0$.	6	L2	CO4
	b.	For a unity feedback system, $G(s) = \frac{K}{s(1+0.4s)(1+0.25s)},$ find range of values of K, Marginal value of K and frequency of sustained oscillations.	6	L2	CO4
		Explain the angle condition in Root locus. Test the following points using	8	L2	CO4
	c.	Explain the angle condition and angle condition for the system $G(s) H(s) = \frac{K}{s(s+2)(s+4)}.$ i) $s = -0.75$ ii) $s = -1 + j4.$			
		OR	110	110	CO4
Q.8	a.	Sketch the complete root locus and comment on the stability of the system $G(s) H(s) = \frac{K}{s(s+1)(s+2)(s+3)}.$	12	L2	
	b.	Sketch the Bode plot for the transfer fl. Find value of 'K' for $W_{gc} = 5 \text{ rad/sec.}$ $G(s) = \frac{K s^2}{(1+0.2s)(1+0.02s)}$	8	L2	CO4
	b.	$W_{gc} = 5 \text{ rad/sec.}$			
Q.9		$W_{gc} = 5 \text{ rad/sec.}$ $G(s) = \frac{K s^{2}}{(1+0.2s)(1+0.02s)}$ Module - 5	10		
Q.9		$W_{gc} = 5 \text{ rad/sec.}$ $G(s) = \frac{K s^{2}}{(1+0.2s)(1+0.02s)}$ Module - 5 For a certain control system $G(s) H(s) = \frac{K}{s(s+2)(s+10)}, \text{ sketch the Nyquist plot and hence calculate the range values of K for stability.}$	10	0 L2	COS

a.	Construct the state model using phase variables if the system is described by the differential equation $\frac{d^3y(t)}{dt^3} + 4\frac{d^2y(t)}{dt^2} + 7\frac{dy(t)}{dt} + 2y(t) = 5u(t)$ Also draw the state diagram.	6	L2	CO5
b.	The transfer function of a control system is $\frac{Y(s)}{U(s)} = \frac{s^2 + 3s + 4}{s^3 + 2s^2 + 3s + 2}$. Obtain the State model using signal flow graph.	7	L2	CO5
 c.	Find the state transition matrix for $A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}$	7	L1	CO5
		2		
	5 5 5			

	à de st			
	to an st			
	Strange Strange			
	Strangelie Strang			
	GAN OLOGIA GANGA			
	Star on and star Star			