

Third Semester B.E./B.Tech. Degree Examination, June/July 2024 Digital System Design using Verilog

Time: 3 hrs.

9

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Define combinational logic. Give two examples.	4	L1	CO
	b.	Explain the procedure to place a sum of products equation into canonical form. Express the function $P = f(a, b, c) = ab' + ac' + bc$ in canonical form.	6	L2	COI
	c.	Solve the function $K = f(w, x, y, z) = \Sigma(0, 1, 4, 5, 9, 11, 13, 15)$ using Karnaugh map.	4	L2	CO
	d.	Simplify the function $F = f(P, Q, R, S) = \Sigma m$ (0, 3, 5, 6, 7, 11, 14) using Quine-McCluskey method.	6	L2	CO
		OR /			
Q.2	a.	Define canonical sum of products and canonical product of sums. Give examples.	4	L1	CO1
	b.	Explain the procedure to place a product of sums equation into canonical form. Explain the function $T = f(a, b, c) = (a + b') (b' + c)$ in canonical form.	6	L2	CO1
	c.	Solve the function G = f(a, b, c, d) = $\pi(0, 4, 5, 7, 8, 9, 11, 12, 13, 15)$ using Karnaugh map.	4	L2	CO1
	d.	Quine-McCluskey method.	6	L2	CO1
4324 C 1 424		Module – 2			1.000
Q.3	a.	Define encoder. Write the truth table, equations and circuit diagram of $8 - to - 3 - line$ priority encoder.	4	L1	CO2
. (b.	Explain the concept of carry-lookahead adder with related equations and block diagram.	6	L2	CO2
	c.	Design one-bit comparator with inputs A_i , B_i – bits to be compared, G_i , E_i , L_i – previous stage inputs and with the outputs G_{i+1} , E_{i+1} , L_{i+1} .	6	L4	CO2
	d.	Implement the function $f(w, x, y, z) = \Sigma m(0, 1, 5, 6, 7, 9, 12, 15)$ using $8 - to - 1 - line multiplexer.$	4	L3	CO2

					C302
		OR			
Q.4	a.	Define decoder. Write the truth table, equations and circuit diagram of $3 - to - 8$ – line decoder.	4	LI	CO
	b.	Explain the operation of $8 - to - 1$ line multiplexer with block diagram, truth table, equation.	6	L2	CO
	c.	Construct parallel binary adder/subtractor using full adder block and EX-OR gates. Also explain the operation of it.	6	L3	CO
	d.	Design two-bit comparator using cascade connection of one-bit comparators and explain its operation.	4	L4	CO
	1	Module – 3			
Q.5	a.	State transparency property in latches. What is the need for master-slave flip flops?	4	L1	CO
	b.	With neat block diagram and truth-table explain the operation of master- slave JK flipflop.	6	L2	CO
	c.	Design a synchronous mod-6 counter using JK flipflops.	6	L4	CC
	d.	Implement mod-4-ring counter using shift registers.	4	L3	CC
Q.6	a.	OR Define register and shift register. Mention two applications of shift	4	L1	CC
		registers.	1		
	b.	With logic diagram and timing diagram explain the operation of positive edge triggered D-flip flop.	6	L2	CO
	c.	Design a four-bit binary ripple up-counter with logic diagram and counting sequence and briefly explain its operation.	6	L4	CC
	d.	Implement Mod-8 twisted ring counter using shift registers and write the count sequence.	4	L3	CO
Q.7	a.	Module – 4 List the different relational operators available in verilog language.	4	L1	CC
	b.	Explain different verilog data types with examples.	6	L2	CC
	с.	For the circuit diagram shown in Fig.Q.7(c), develop a verilog program for	6	L3	CC
		the output Y in: i) data flow description ii) behavioral description. a f			
		2 of 3.			

				BE	C302
1	d.	Develop a verilog program to implement 2×1 multiplexer using conditional operator. Also write the truth table of 2×1 multiplexer.	4	L4	CO
		OR S		1	
Q.8	a.	List the different styles of descriptions in verilog programming.	4	L1	CO
	b.	Explain verilog shift operators and arithmetic shift operators with examples.	6	L2	CO
	c.	Let A = 5'b11011, B = 5'b10101, C = 4'd3. Determine the output of the following verilog program statements: i) d = &A ii) e = \sim^{4} 4'b1011 iii) f = \sim (A & (\sim B)) iv) g = A B v) b = 3 ** 2 vi) i = {2{A}}.	6	L3	CO
	d.	Develop a verilog program for half subtractor using data flow description style by providing truth table and expressions.	4	L4	CO
		Module – 5			
Q.9	a.	Write the verilog format of if-else statement and explain it.	4	L1	CO
	b.	Explain the operation of positive triggered JK flipflop by writing verilog code using case statement and truth table.	6	L2	CO
	c.	Develop a verilog behavioral description code for calculating the factorial of positive integers.	6	L3	со
10	d.	Develop a verilog program for D-latch using behavioral description style by providing truth table.	4	L4	CO
		OR			
Q.10	a.	Write the verilog format of case statement and explain it.	4	L1	CO
	b.	Explain the operation of 2-to-1-line multiplexer by writing verilog structural description program and block diagram.	6	L2	CO
	c.	Develop a verilog behavioral description code for three-bit binary up counter.	6	L3	CO
	d.	Develop a verilog program for half adder using structural description style by providing truth table and expressions.	4	L4	CO
6	0				
	L				
		3 of 3			
		S			
	2				
	100				
54	~ ~				