

BEC306C

Third Semester B.E./B.Tech. Degree Examination, June/July 2024 Computer Organization and Architecture

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	M	L	С
Q.1	a.	With a neat diagram, describe the functional units of a computer. Give	10	L2	CO1
		examples for I/O.			
	b.	Write assembly language program for $X = (A * B) + (C * D)$ using one	06	L3	CO1
		address, two address, and three address instructions formats.			
	c.	Explain the Bus structures.	04	L2	CO1
		OR			
Q.2	a.	With a neat diagram, discuss the operational concepts in a computer	10	L2	CO1
		highlighting the role of PC, MAR, MDR, IR.			
	b.	Discuss IEEE standard for single precision and double precision floating	06	L3	CO1
		point numbers with standard notations.			
	c.	Distinguish between Big-endian and Little-endian memory assignment.	.04	L3	CO1
		With a neat sketch, show how the value 26789435 is stored using these			
		methods.			
		Module – 2			
Q.3	a.	Define addressing mode. Explain any five addressing mode with syntax and	10	L2	CO2
		examples.			
×	b.	What is subroutine? With a pseudocode or program segment illustrate	05	L2	CO2
		parameter passing using register.			~~~
	c.	Explain various assembler directives used in assembly language program.	05	L2	CO2
		OR			
Q.4	a.	Explain stack operation with an example.	10	L2	CO2
	b.	Explain the shift and rotate operations with examples.	06	L2	CO2
	c.	Write a program to add 'n' number using indirect addressing mode.	04	L3	CO2
		Module – 3			000
Q.5	a.	Showing the possible registers configuration in I/O interface. Explain	10	L2	CO3
	-	program controlled input/output.	10	TA	600
	b. (Explain in detail the situations where a number of devices capable of	10	L2	CO3
		initiating interrupts are connected to processor. How to resolve the			
		problems?			
	1	OR	10	TO	600
Q.6	a.	What is an interrupt? With an example illustrate the concept of interrupt.	10	L2	CO3
	b.	Explain the Register involved in a DMA interface to illustrate DMA.	10	L2	CO3
		Module – 4	10	TO	001
Q.7	a.	Illustrate internal structure of static memory.	10	L2	CO4
	b.	With a neat diagram, explain virtual memory organization.	10	L2	CO4
		OR	4.0	X -	001
Q.8	a.	Classify memory in a computer. With a neat diagram, describe the	10	L2	CO4
		organization of $2M \times 8$ DRAM chip.		T	001
	b.	Briefly explain secondary storage devices.	06	L2	CO4
	c.	Explain use of a cache memory.	04	L2	CO4
				,	

BEC306C

ams and10with neat10Add(R_1),06	discuss three-bus organ Discuss Hardwired con illustrate the logic to ge Explain single-bus or diagram, highlight the	 discuss Discuss illustration a. Explain diagram b. Develo Bo with 	Q.9 Q.10
ams and10with neat10Add(R_1),06	discuss three-bus organ Discuss Hardwired con illustrate the logic to ge Explain single-bus or diagram, highlight the Develop the complete Ro with appropriate rer	 discuss Discuss illustration a. Explain diagram b. Develo Bo with 	
with neat 10 Add(R_1), 06	Discuss Hardwired con illustrate the logic to ge Explain single-bus or diagram, highlight the Develop the complete	 b. Discuss illustrat a. Explain diagram b. Develo Ro with 	Q.10
with neat 10 Add(R_1), 06	Explain single-bus or diagram, highlight the Develop the complete	 a. Explain diagram b. Develo B. with 	Q.10
Add (R_1) , 06	diagram, highlight the Develop the complete Ro with appropriate rer	b. Develo	Q.10
Add (R_1) , 06	diagram, highlight the Develop the complete Ro with appropriate rer	b. Develo	Q.10
	Develop the complete	b. Develo Rowith	
ams. 04	R ₃ with appropriate ref Discuss micro program	c. Discus	
3			