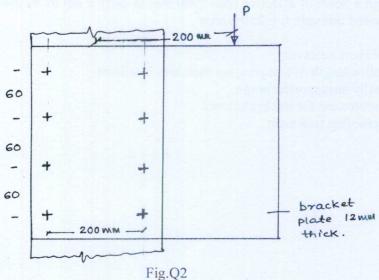
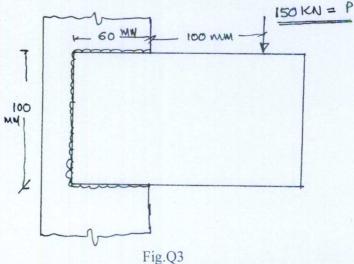
Sixth Semester B.Arch. Degree Examination, June/July 2017 Structures - VI

Time: 3 hrs.


Max. Marks: 100

Note: 1. Answer any FIVE full questions. 2. Use of IS 800 and SP-6(1) permitted.

State and explain "design strength of a bolt".


(06 Marks)

- Two plates of 410 grade and of thickness, 8 mm each are lap jointed using 16 mm dia bolts of grade 4.6 calculate the design strength of bolt.
- 2 Calculate the design load 'P' for the joint shown in Fig.Q2. 18 mm dia grade 4.6 bolts are used.

(20 Marks)

3 Calculate the size of weld required for the joint shown in Fig.Q3.

(20 Marks)

09ENG6.5

- 2, ISA 80 × 80 × 8 mm placed back to back and connected to both sides of a gusset plate, using 5 Nos 16 mm dia bolts. Calculate the design load the member can carry as a tie member. (20 Marks)
- 5 Determine the design axial load on the column ISMB 350 @ 52.4 kg/m, given the length of the column is 3000 mm, if
 - a. Ends are fixed
 - b. Ends are hinged
 - c. One end is fixed and other hinged
 - d. One end is fixed and other free.

(20 Marks)

6 Design a slab base for a column ISHB 250 @ 51 kg/m, to carry an axial design load of 900 KN. 410 grade steel and M₂₅ concrete are used. Sketch the details of connections.

(20 Marks)

- Design a beam of effective span 5000 mm to carry a udl of 40 kN/m. The beam is laterally restrained throught $f_y = 250 \text{ N/mm}^2$. (20 Marks)
- **8** Write short notes on:
 - a. Effective length of compression members in trusses
 - b. Laterally unsupported beams
 - c. Fire protection for steel structures
 - d. Fire proofing treatment

(20 Marks)

* * * * *