

Third Semester B.E./B.Tech. Degree Examination, June/July 2024 AV Mathematics – III for EC/BM Engineering

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. VTU Formula Hand Book and statistical table are permitted.
3. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	M	L	С
Q.1	a.	Find the Fourier series for	6	L2	CO1
		$f(x) = \begin{cases} -K, & \text{in } (-\pi, 0) \\ K & \text{in } (0, \pi) & \text{and hence deduce} \end{cases}$			5a
		$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$			
		4 3 5 7			
	b.	Expand $f(x) = 2x - 1$ as a cosine half range Fourier series in $0 < x < 1$.	7	L2	C01
	c.	Express y as a Fourier series upto the first harmonics given the following	7	L3	C01
		values:			
		OR		1	
Q.2	a.	Find the Fourier series for $f(x) = x - x^2$ in $-1 < x < 1$.	6	L2	CO1
	b.	Show that half range sine series of	7	L2	C01
		$f(x) = \pi x - x^2$ in the interval $(0, \pi)$ is			
	÷.	$\frac{8}{\pi} \sum_{h=0}^{\infty} \frac{1}{(2n+1)^3} \sin(2n+1)x$			
	c.	Obtain the Fourier series of y upto 2^{nd} harmonics $f(x)$ is given by	7	L3	CO1
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		Module – 2			-
Q.3	a.	Find the Fourier transform of	6	L2	CO2
	6	$f(x) = \begin{cases} 1 - x^2, & x < 1\\ 0, & x \ge 1 \end{cases} \text{ and hence find the value of } \int_0^\infty \frac{x \cos x - \sin x}{x^3} dx$			
	b.	Find the Fourier sine and cosine transform of $f(x) = e^{-\alpha x}$, $\alpha > 0$.	7	L2	CO2
ź	c.	Solve the integral equation $\int_{0}^{\infty} f(\theta) \cos \alpha \theta d\theta = \begin{cases} 1 - \alpha, & 0 \le \alpha \le 1 \\ 0, & \alpha > 1 \end{cases}$ and hence	7	L3	CO2
		evaluate $\int_{0}^{\infty} \frac{\sin^2 t}{t^2} dt$.			
		1 of 3			

BMATEC301/BBM301

		OR			
Q.4	a.	Find the Fourier transform of $e^{-a^2x^2}$, $a > 0$.	6	L2	CO2
1	b.	Find the Fourier sine transform of $f(x) = e^{- x }$ and hence evaluate $\int_{0}^{\infty} \frac{x \sin mx}{1 + x^{2}} dx, m > 0$	7	L2	CO2
	c.	Find the discrete Fourier transform of the sequence $\{1, 2, 1, 3\}^{T}$.	7	L3	CO2
		Module – 3	1		
Q.5	a.	Obtain the Z-transform i) Cosnθ ii) Sinnθ.	6	L2	CO3
	b.	Find the inverse Z-transform of $\frac{3z^2 + 2z}{(5z-1)(5z+2)}$	7	L2	CO3
	c.	Solve by using Z-transforms : $y_{n+2} + 2y_{n+1} + y_n = n$ with $y_0 = 0 = y_1$.	7	L3	CO3
		OR			
Q.6	a.	Find the Z-transform of $2n + \sin\left(\frac{n\pi}{4}\right) + 1$	6	L2	CO3
	b.	Find the inverse Z-transform of $\frac{4z^2 - 2z}{(z-1)(z-2)^2}$.	7	L2	CO3
	c.	If $\overline{u}(z) = \frac{2z^2 + 3z + 12}{(Z-1)^4}$ find the value of u_0, u_1, u_2 .	7	L3	CO3
		Module – 4	T		
Q.7	a.	Solve $(D^4 + 8D^2 + 16) y = 0.$	6	L1	CO4
	b.	Solve $\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 13y = e^{3t} \cosh 2t.$	7	L2	CO4
	c. ,		7	L3	CO4
	Gam	OR			
Q.8	a.	Solve $y'' + 9y = \cos 2x \cos x$.	6	L2	CO4
	b.	Solve $(2x+1)^2 y'' - 2(2x+1)y' - 12y = 6x + 5$.	7	L2	CO4
	c.	In an LCR circuit, the charge q on a plate of a condenser is given by $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{c} = E \sin pt$. Solve the equation for q.	7	L3	CO4
		2 of 3			

SU.

BMATEC301/BBM301

0.0	6	Module – 5	6	L1	C05
Q.9	а.	Fit a straight line for the following data: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6		
	b.	Obtain the lines of regression and hence find the coefficient of correlation for the data: $\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7	L2	CO5
	c.	Compute the rank correlation coefficient for the following data: x 68 63 75 50 62 80 78 40 55 60 y 62 58 68 45 81 60 68 48 50 70	7	L3	CO5
		OR	-		00
Q.10	a.	An experiment on life time 't' of cutting tool at different cutting speeds v(units) are given below	6	L2	CO5
	b.	The following data gives the age of husband (x) and the age of wife (y) in years. Form the 2 regression lines and calculate the age of husband corresponding to 16 years of age of wife. $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		L2	COS
	c.	If the coefficient of correlation between the variables x and y is 0.5 and the acute angle between their lines of regression is $\tan^{-1}(3/5)$. Show that $\sigma_y = 2\sigma_x$.	7	L3	COS
		Standard S			
		3 of 3			
		6			