

Fourth Semester B.E./B.Tech.Degree Examination, June/July 2024 Transmission and Distribution

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	С		
Q.1	a.	With the help of a neat diagram, explain the transmission and distribution	8	L2	CO1		
		system scheme indicating the standard voltages.					
	b.	Define string efficiency. List the methods of improving string efficiency.	4	L1	CO2		
	c.	A transmission line has a span of 275 m between level supports. The conductor	8	L3	CO1		
		has an effective diameter of 1.96 cm and weighs 0.865 kg/m. Its ultimate					
		strength is 8060 kg. If the conductor has ice coating of radial thickness 1.27 cm					
		and is subjected to a wind pressure of 3.9 gm/cm ² of projected area, calculate					
		sag for a safety factor of 2. Weight of 1 C.C of ice is 0.91 gm.					
OR							
Q.2	a.	Explain how increase in transmission voltage if a transmission line results in,	6	L2	COI		
		(i) Reduced volume of conductor material.					
-		(ii) Increased transmission efficiency.	6	12	COI		
	b.	Define sag and derive an expression for sag of a transmission line when	0	LZ	COI		
		supports are at the same level.	0	12	CO^{2}		
	c.	Each line of a 3-phase system is suspended by a string of 3 similar insulators, in	0	LS	002		
		the voltage across the line unit is 17.5 KV, calculate the fille-to-neutral voltage.					
		Assume that the shunt canacitance between each insulator and earth is $\frac{1}{2}$ of the					
		Assume that the shuft cupacitatice between each mounter and can a 8					
		capacitance of the insulator itself. Also find the string efficiency.					
		Module – 2			000		
Q.3	a.	Derive an expression for the inductance of a conductor due to internal flux and	10	L2	CO3		
		external flux.	10	1.2	COL		
	b.	In a single phase line as shown in Fig. Q3 (b), conductors a and a' in parallel	10	L3	003		
		form one conductor and conductors b and b' in parallel form the return path.	1				
		Calculate the total inductance of the line per km assuming that current is			:		
		equally shared by the two parallel conductors; conductor diameter is 2 cm.					
	.49						
	Ca						
	alilita.						
		20cm 100 cm 120 cm					
		Fig. Q3 (b)					
		OR	1 .		000		
Q.4	a.	Define the terms self GMD and Mutual GMD.	4		CO3		
	b.	Derive the expression for line-to-neutral capacitance of a 3-phase overhead line	10	L2	CO3		
		when the conductors are symmetrically spaced.	-	TA	000		
	c.	A single phase transmission line has two parallel conductors 3 meters apart,	6	L3	003		
		radius of each conductor being 1 cm. Calculate the capacitance of the line					
		per km. Given $\varepsilon_0 = 8.854 \times 10^{-12} \text{F/m}.$					

BEE402

		Module – 3		TI	COA
0.5	a.	Explain how transmission lines are classified.	4		C04
2.0	b.	Derive an expression for sending end voltage and sending end current of a medium transmission line employing nominal-T method. Draw the	8	1.2	04
		corresponding phasor diagram.	0	12	COA
	c.	A 1-phase overhead transmission line delivers 1100 kw at 33 kV at 0.8 power	8	L3	C04
		factor lagging. The total resistance and inductive reactance of the line are 10 52			
		and 15 Ω respectively. Determine (i) Sending end voltage (ii) Sending end			
		power factor (iii) transmission efficiency.			
		OR	10	1.2	CO4
Q.6	a.	Derive expressions for ABCD constants of a long transmission line by ligorous	10		04
		method of analysis.	10	13	CO4
	b.	A 100 km long, 3-phase 50 Hz transmission line has the following line	10	13	001
		constants :			
		Resistance / phase / km = 0.1Ω			
		Reactance / phase / km = 0.5Ω			
		Susceptance / phase / $km = 10 * 10^{\circ}$ siemens.			
		If the line supplies load of 20 MW at 0.9 pl lagging at 60 KV at the receiving			
		end, calculate by nominal- π method, (1) Voltage regulation (1) Transmission			
		efficiency.			
	1	Module - 4	10	L2	C05
Q.7	a.	What is Corona? Derive the expressions for disruptive critical voltage and	10		
		visual critical voltage.	10	13	C05
	b.	Determine the critical disruptive voltage and visual critical voltage for a	10		000
		3-phase 50 Hz, 132 KV line situated in a temperature of 50 C and at a			
		barometric pressure of 74 cm. The conductor diameter is 1.5 cm wille the			
		equilateral spacing between the conductors is 2.75 m. The surface megularity			
		factor is 0.9 while $m_v = 0.75$			
		OR OR INDER	10	13	COS
Q.8	a.	What is grading of cables? Why grading is needed? Explain capacitance grading of cables with diagram and necessary equations.	10		003
	b.	A single core cable of diameter 2 cm and lead sheath of diameter 5.3 cm is to	10	L3	C05
		be used on a 66 KV, 3-phase system. Two intersheaths of diameter 3.1 cm and			
		4.2 cm are introduced between the core and the sheath. If the maximum stress			
		in the layers is the same, determine the voltages on the intersheaths.			
		Module – 5		1.0	000
Q.9	a.	What is power quality? Explain the various power quality problems.	8		C00
	b.	Explain bath tub curve with the help of a neat graph.	6		00
	c.	What are the limitations of distribution system?	6		CUO
		OR	10	TO	000
Q.10) a.	Explain Radial and Parallel distribution schemes.	10		C06
	b.	A 2-wire feeder ABC has load of 60 A at C and a load of 30 A at B both at 0.8	10	L3	CUG
		power factor lagging. The impedance of AB is $(0.8 + 10.16)$ ohm and that of			
		BC is $(0.16 + j 0.24)$ ohm. If the voltage at far end C is to be maintained at			
		400 V, determine the voltage at A and voltage at B.			-
		* * * * *			
		A CONTRACTOR AND A			
		Contraction of the second s			
		2 of 2			
		2012			
		Car			
					10.1
		distant.			
	C				