

Mathematics-III for EE Engineering

Time: 3 hrs.

0

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. VTU Formula Hand Book is permitted. 3. M : Marks, L: Bloom's level, C: Course outcomes.

4. Mathematics handbook is permitted.

		Module – 1	M	L	C
Q.1	a.	Solve : $(D^4 + 8D^2 + 16)y = 0$.	6	L1	C01
	b.	Solve : $(D^3 - 3D + 2)y = 2\sinh x$	7	L2	C01
	c.	Solve : $x^2y'' - 3xy' + 5y = 3\sin(\log x)$	7	L3	C01
		OR			
Q.2	a.	Solve : $(D^4 - 4D^3 - 5D^2 - 36D - 36)y = 0$.	6	L1	C01
	b.	Solve: $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = \sin 2x$.	7	L2	CO1
	c.	Solve: $(2x+1)^2 \frac{d^2y}{dx^2} - 2(2x+1)\frac{dy}{dx} - 12y = 3(2x+1)$.	7	L3	CO1
		Module – 2 Module – 2			
Q.3	a.	Find the curve at best fit of the form $y = ax^6$ to the following data : x 1 2 3 4 5 y 0.5 2 4.5 8 12.5	6	L2	CO2
	b.	Calculate the coefficient of correlation and obtain the lines of regression for the following data : $\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7	L3	CO2
	c.	In a partially destroyed laboratory record of correlation data, following results only available : Variance of x is 9 and regression lines, 4x - 5y + 33 = 0; $20x - 9y = 107$. Find (i) Mean value of x and y (ii) SD of y. (iii) Coefficient of correlation between x and y.	7	L4	CO2
		COR			
Q.4	a.	Fit a curve of the form, $y = ax^2 + bx + c$ to the following data : x: 1 2 3 4 5 y: 10 12 8 10 14	6	L2	CO2
	b.	If θ is the acute angle between the two regression lines relating the variables x and y, show that $\tan \theta = \left(\frac{1-r^2}{r}\right) \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$. Indicate the significance of the cases $r = 0$ and $r = \pm 1$	7	L2	CO2

BMATE301/BEE301

	c.	Ten competitor's in a music contest ranked by 3 judges A, B, C in the	7	L3	CO2
		following order. Use the rank correlation coefficient to decide which pair			
		judges have the nearest approach to common test of music.			
		B 3 5 8 4 7 10 2 1 6 9 C 6 4 9 8 1 2 3 10 5 7			
2.5	a.	Module - 3Find the Fourier series for the function $f(x) = x^2$ in the interval	6	L2	CO3
2.5	a.				
		$-\pi \le x \le \pi$, hence deduce the $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.			
	b.	Expand the function $f(x) = x(\pi - x)$ over the interval $(0,\pi)$ in half range	7	L3	CO3
		cosine Fourier series hence deduce that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$			
			-		600
	c.	The following table gives the variations of a periodic current A over a certain period T.	7	L3	CO3
				6	
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		A(amp) 1.98 1.30 1.05 1.30 -0.88 -0.25 1.98			
		Show that there is a current part of 0.75 amp in the current A and obtain the			
		amplitude of the first harmonic.			
		OR	-		CO
Q.6	a.	Find the Fourier expansion of the function $f(x) = (\pi - x)^2$ over the interval	7	L2	CO
		$0 \le x \le 2\pi$. Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.			
		$n \leq n \leq 2n$. Hence denote that $\sum_{n=1}^{n} n^2 = 6$			
		$\begin{bmatrix} 1 \\ -x \end{bmatrix}$ for $0 \le x \le \frac{1}{2}$	6	L2	CO3
	b.	Expand the function $f(x) = \begin{cases} \frac{4}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{cases}$ in the half range sine			
		Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine			
		series.		÷	
	-		7	L3	CO:
	c.	Find the constant term and the first harmonic in the Fourier series for $f(x)$	/		0.
	4	given by the table. π 2π 4π 5π			
	1	x 0 $\frac{\pi}{3}$ $\frac{2\pi}{3}$ π $\frac{4\pi}{3}$ $\frac{5\pi}{3}$ 2π			
(Ø	f(x) 1.0 1.4 1.9 1.7 1.5 1.2 1.0		5	
		Module – 4			
		$1 \text{ for } \mathbf{x} \le a$	6	L2	CO
Q.7	a.	Find the Fourier transform of the function, $f(x) = \begin{cases} 1 & \text{or } x = 0 \\ 0 & \text{for } x \ge a \end{cases}$			
		where a is a positive constant hence evaluate integrals,			
		$\int_{0}^{\infty} \frac{\sin ax \cos ax}{dx} dx$			
		$\int \frac{dx}{dx}$			
		2 of 3			
	A				

BMATE301/BEE301

m.

	b.	Find the Fourier cosine transform of $f(x) = e^{-ax}$, $a > 0$, hence deduce that	7	L3	CO4
		$\int_{0}^{\infty} \frac{\cos mx}{x^{2} + a^{2}} dx = \frac{\pi}{2a} e^{-am}$			
	c.	Find the inverse z-transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$.	7	L3	CO4
		OR			
Q.8	a.	Find the Fourier transform of $f(x) = e^{-2}$.	6	L2	CO4
	b.	Find the z-transform of $\sin n\theta$ and $\cos n\theta$ hence find $z\left\{\cos\left(\frac{n\pi}{2}\right)\right\}$ and $z\left\{\sin\left(\frac{n\pi}{2}\right)\right\}$.	7	L3	CO4
	c.	Solve the difference equation, $u_{n+2} - 5u_{n+1} + 6u_n = 2$ given $u_0 = 3$, $u_1 = 7$,	7	L3	CO4
		using z-transforms.	51		00002020-0
		Module - 5			
Q.9	a.	Define (i) Type I and Type II errors.	6	L1	CO5
		(ii) Confidence interval.			
		(iii) Level of significance.			_
	b.	The probability that a pen manufactured by a company will be defective is 0.1. If 12 such pens are selected, find the probability that (i) Exactly 2 will be defective. (ii) At least 2 will be defective. (iii) None will be defective	7	L2	COS
	c.	In normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and SD, given that $A(0.5) = 0.19$ and $A(1.4) = 0.42$, where $A(Z)$ is the area under the standard normal curve from 0 to z.	7	L3	COS
		OR			
Q.10	a.	The pdf P(x) of a variate X is given by the table : x: 0 1 2 3 4 5 6 P(x): K 3K 5K 7K 9K 11K 13K For what value of K, does this represent a valid probability distribution? Also find P(x < 4), P(x \ge 5) and P(3 < x \le 6).	6	L2	CO5
(b.	Consider the sample consisting of nine numbers, 45, 47, 50, 52, 48, 47, 49, 53 and 51. The sample is drawn from a population whose mean is 47.5. Find whether the sample mean differs significantly from the population mean at 5% level of significance (Given $t_{0.05}$ (df = 8) = 2.31)	7	L3	CO5
2	c.	A die is thrown 60 times and the frequency distribution for the number appearing on the face x is given by the table : x 1 2 3 4 5 6 frequency 15 6 4 7 11 17 Test the hypothesis that the die is unbiased. Given $\chi^2_{0.05}(5) = 11.07$ and $\chi^2_{0.01}(5) = 15.09$.	7	L3	CO5
		****	0.00		
		3 of 3			
		4			
		and a second			
ť	Ritts				

3