BEE306A

Third Semester B.E/B.Tech. Degree Examination, Dec.2023/Jan.2024 Digital Logic Circuits

CBCS SCHEME

Time: 3 hrs.

USN

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	Μ	L	С
1	a.	Define combinational logic circuit. List the various steps in designing the	6	L1	CO1
		combinational logic circuit and explain with a block diagram.		T 4	001
	b.	Explain the canonical minterm and maxterm form with examples.	4	L1	C01
	c.	Simplify the following Boolean function using K-map and implement using basic gates.	10	L4	C01
		$P = f(a, b, c, d) = \Sigma m(2, 3, 4, 5, 13, 15) + d(8, 9, 10, 11)$		5	
		$y = f(a, b, c, d) = \pi m (0, 4, 5, 7, 8, 9, 11, 12, 13, 15).$			
		OR			~ ~ ~
2	a.	Simplify the following expression using Quine–Mc–clusky menimisation technique. $Y = f(a, b, c, d) = \Sigma m(7, 9, 12, 13, 14, 15) + d(4, 11).$	10	1.4	CO2
	b.	Convert the following Boolean function into their proper canonical form and	6	L4	CO2
		represent in decimal notation.			Y
		i) $f = ab + bc$			
		ii) $f = (\overline{x} + y)(y + \overline{z})$.			
	с.	Define the following terms :	4	L1	CO2
		i) Literal			
	•	ii) Prime implicates			
		iii) Essential prime implicants			
		iv) Maxterm.			
2		$\frac{\text{Module} - 2}{\text{Module} - 2}$	E	110	CO2
3	a.	With the aid of general structure, clearly distinguish between a decoder and an encoder.	5	L2	
	b.	Design a combinational logic circuit that will convert a BCD digit to Excess-3. Construct the truth table and simplify each output equation using K-map and implement using basic gates.	10	L2	CO2
	c.	Design a 4 to 16 line decoder by cascading 2 to 4 line decoders which has the	5	L5	CO2
		active low output and active low enable input.			
	r	OR	10		000
4	a.	Design a two-bit magnitude comparator with the help of truth table and	10	L5	CO2
	b.	simplify the output equations using K-maps. Draw a logic diagram. Implement the following Boolean function using $4 : 1 \text{ MUX}$, $f(a, b, c) =$	5	L5	CO2
	0.	$\Sigma m(1, 3, 5, 6)$. Take b, c as select lines.	5	115	04
	с.	Design a full adder by constructing the truth table and simplify the output	5	L5	CO2
		equations.			
	L	Module – 3			L
5	a.	Explain the operation of master-Slave JK-flip-flop with a neat logic diagram functional table, logic symbol and timing diagram.	10	L2	CO3
	b.	Explain the operation of SR Latch act as a switch debouncer with the help of	6	L2	CO3
		timing diagram.			
	c.	Obtain the characteristic equation of JK – flip-flop and D flip-flop.	4	L4	CO3
		1 of 2			

BEE306A

				DEE	JUUA
		OR			
5	а.	Draw a neat diagram and explain the working of positive edge triggered D- flip-flop with functional table, logic symbol and timing diagram.	10	L2	CO3
	b.	Differentiate sequential logic circuit and combinational logic circuit.	4	L2	CO3
	с.	Explain the operation of gated SR latch using NAND gates.	6	L2	CO3
		Module – 4			
7	a.	With a neat logic diagram, explain the 4-bit universal shift register using D-	10	L2	CO4
	u.	flip-flops and a 4 : 1 MUX. Write a mode control and register operation.			
	b.	Explain the working of 4-bit binary ripple counter using a positive edge	10	L2	CO
	0.	trigger T-flip-flop with an enable line and relevant timing diagram.			
	L	, OR			L
3	a.	Design a synchronous counter to count the sequence 0, 1, 4,6, 7, 5 and repeat	12	L5	CO
,	u.	using positive edge trigged JK Flip-flops.			
	b.	Design a 4-bit mod-8 Johnson counter and also write the count sequence table.	8	L5	CO
	0.	Module – 5			
)		Explain Mealy and Moore model in a sequential circuit analysis.	8	L2	CO
	a.	Design a clocked synchronous sequential network based on the state diagram	12	L4	CO
	b.	given below Fig.Q9(b) using T-flip-flops.	14	1.4	0.
		$\hat{\mathbf{O}}$			
		Yoot			
		12 100			
					-
		and do the lite			-
		Vo/			
	•	1/0 105			
		10 10			
					2
	-	Fig.Q9(b)		3	
		OR	0		00
10	a.	Write short notes on :	8	L4	CO
		i) ROM			
		ii) RAM			
		iii) EPROM			
		iv) Memory Flash.			60
	b.	Analyse the following sequential logic circuit as shown in Fig.Q10(b) below.	12	L4	CO
		Obtain the excitation and output equation, transition table and state table. Also			
		drouv a stata diagram			
		draw a state diagram.			1
		draw a state diagram.			

2 of 2