

Third Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Analog Electronic Circuits

Time: 3 hrs.

657

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		2. M. Murks, L. Bloom's level, C. Course oucomes.		1	
		Module 1	Μ	L	C
Q.1	a.	With circuit diagram and waveform, explain Full Wave Bridge rectifier.	6	L2	COI
	b.	Explain the analysis of Double end clipper circuit which clips both the peaks of an sinusoidal AC signal.	7	L4	COI
	c.	For the circuit shown in Fig. Q1 (c) analyze and plot the waveform for V_0 for the input indicated. V_1^{i} $+$ $ V_1^{i}$ $+$ $ V_1^{i}$ $+$ V_1^{i} $+$ V	7	L4	COI
Q.2	a.	What are the factors affect the stability of operating point in a transistor?	5	L1	C01
2.2	1.282			1.000	
47	b.	Discuss the exact analysis of voltage divider bias to find I_B , I_{CQ} , V_{CEQ} and I_{CSat} .	7	L4	COI
	с.	Design the values of R_B , R_E and R_C for the emitter bias circuit shown in Fig.Q2 (c). Assume silicon transistor with $\beta = 100$.	8	L3	CO1
	de.	Module – 2			
Q.3	a.	Mention the advantages of h-parameters for transistor analysis.	5	L1	CO2
	b.	Discuss the analysis of single stage amplifier, frequency response.	7	L4	CO2
	c.	A transistor with $h_{ie} = 1.1 \text{ K}\Omega$, $h_{fe} = 50$, $h_{re} = 205 \times 10^{-4}$, $h_{Oe} = 25 \mu\text{A/V}$ is connected in CE configuration given in Fig. Q3 (c). Calculate A _i , A _{is} , A _v , A _{vs} , R _i and R _o .	8	L3	CO2

				BEE303		
					-	
Q.4	a.	OR Obtain the expression for Miller effect capacitance.	6	L2	CO2	
Q.4	a. b.	Explain the high frequency analysis of BJT amplifier.	7	L2	CO2	
	с.	Determine the lower cut-off frequency for the emitter follower using BJT amplifier with $C_S = 0.1 \ \mu\text{F}$, $R_S = 1 \ \text{K}\Omega$, $R_1 = 12 \ \text{K}\Omega$, $R_2 = 4 \ \text{K}\Omega$, $R_E = 1.5 \ \text{K}\Omega$, $C = 0.1 \ \mu\text{F}$, $\beta = 100$, $V_{CC} = 15 \ \text{V}$, $V_{BE} = 0.7 \ \text{V}$, $r_0 = \infty$ and $h_{ie} = 1.04 \ \text{K}\Omega$.	7	L3	CO2	
	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	Module – 3				
Q.5	a.	With two stage cascaded amplifier, explain the need of cascading.	6	L2	CO3	
	b.	Write a note on cascade connection.	6	L1	CO3	
	c.	Explain the DC analysis of Darlington emitter follower.	8	L2	CO3	
_		OR				
Q.6	a.	What are the characteristics of negative feedback amplifiers?	6	L1	CO3	
	b.	An amplifier has mid-band voltage gain of 1000 with $f_L = 50$ Hz and $f_H = 50$ kHz, if 5% negative feedback is applied then calculate gain, f_L and f_H with feedback.	6	L3	CO3	
	c.	Obtain expression for input and output resistance of voltage series amplifier.	8	L2	CO3	
-		Module – 4	6	1.2	CO3	
Q.7	a.	With waveforms, explain classification of power amplifiers.	6	L2		
	b.	Derive an expression for second harmonic distortion using 2 point method for power amplifier.	6	L3	CO3	
	c.	With circuit diagram and waveform, explain working of class B push pull amplifier. Also show that conversion efficiency is 78.5%.	8	L2	CO3	
0.0		OR	6	L2	CO3	
Q.8	a.	With block diagram, explain the principle of working of an oscillator.				
	b.	Explain the principle of tuned oscillators. Also obtain expression for frequency of oscillations of Hartley oscillator.	6	L3	CO3	
(c.	A quartz crystal has the following constants, $L = 50 \text{ mH}$, $C_1 = 0.02 \text{ PF}$, $R = 500 \Omega$ and $C_2 = 12 \text{ PF}$. Determine the values of f_S and f_P . If the external capacitance across the crystal changes from 5 PF to 6 PF, find the change in frequency of oscillations.	8	L3	CO3	
	and .	Module – 5				
Q.9	a.	Give the comparison between BJT and MOSFET.	6	L2	CO3	
	b.	Explain the construction and working of n-channel JFET.	7	L2	CO3	
	c.	Obtain the expression for A_V , Z_i and Z_O for fixed bias common source amplifier using JFET.	7	L3	CO3	
	T	OR I DATE ALL INTERIOR	10		000	
Q.10	a.	Explain the characteristics of n-channel E-MOSFET. Also describe its working.	10	L2	CO3	
		2 of 3				
	A. Attine					
2	A. A.	14 C				

•

BEE303

and a stand of the 3 of 3

22009.0