

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Discrete Mathematical Structures

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	Μ	L	C
Q.1	a.	Define tautology. Prove that for any propositions p, q, r the compound proposition. $[(p \land \exists q) \to r] \to [p \to (q \lor r)] \text{ is a tautology}$	06	L2	CO1
	h	Test whether the following is a valid argument:	07	12	COI
	b.	If Ram studies then he will pass 12 th . If Ram passes 12 th then his father gifts him a bike. If Ram doesn't play video game then he will pass 12 th . Ram did not get a bike.	07	L3	CO1
		∴ Ram played video game.			
	c.	 Give direct proofs of the statements: i) If k and l are odd then k + l is even. ii) If k and l are odd then kl is odd. 	07	L2	CO 1
		OR	J		
Q.2	a.	Define (i) Proposition (ii) Open statement (iii) Quantifiers	06	L2	C01
	b.	Using the laws of logic, prove the following logical equivalence: $[(p \lor q) \land (F_0 \lor p) \land p] \Leftrightarrow p \land q$	07	L2	CO1
	c.	Write the following statement in symbolic form and find its negation: "If all triangles are right angled then no triangle is equilateral".	07	L2	CO1
		Module – 2			
Q.3	a.	Prove by using mathematical induction. $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$	06	L2	CO1
	b.	How many words can be made with or without meaning from the letters of the word "STATISTICS"? In how many of these a and c are adjacent? In how many vowels are together?	07	L3	CO2
	c.	Find the coefficient of x^3y^8 in the expansion of $(2x - y)^{11}$.	07	L2	CO2
<u> </u>	T	OR	20		
Q.4	а.	Obtain the recursive definition for the sequence in each of the following cases: (i) $a_n = 5n$ (ii) $a_n = 3n + 7$ (iii) $a_n = n^2$ (iv) $a_n = 2 - (-1)^n$	06	L2	CO2
	b.	A woman has 11 close relations and wishes to invite 5 of them to dinner. In how many ways can she invite them if (i) there is no restriction on her choice. (ii) 2 persons will not attend separately (iii) 2 persons will not attend together.	07	L3	CO2
1	c.	In how many ways can we distribute 7 apples and 5 oranges among 3 children such that each child gets atleast one apple and one orange?	07	L3	CO2

BCS405A

		Module – 3	0	TO	001
Q.5	a.	State pigeon hole principle. Using pigeon hole principle find the minimum number of persons chosen so that atleast 5 of them will have their birthday	06	L3	CO3
		in the same month.	0.7	TO	001
	b.	Let $A = \{a, b, c, d\}$ and $B = \{1, 2, 3, 4, 5\}$. Find the number of 1-1 functions and onto functions from (i) A to B (ii) B to A	07	L2	CO3
	c.	Let A = {1, 2, 3, 4, 5}. Define a relation R on A × A by $(x_1, y_1) R (x_2, y_2)$	07	L2	CO3
		iff $x_1 + y_1 = x_2 + y_2$.			
		(i) Verify that R is an equivalence relation			
		(ii) Determine the equivalence class of [(2, 4)]			
L	k	OR			001
Q.6	a.	Consider the functions f and g from R to R defined by $f(x) = 2x + 5$ and	06	L2	CO3
		$g(x) = \frac{1}{2}(x-5)$. Prove that g is inverse of f.			001
	b.	Let $A = \{1, 2, 3, 4\}$ and R be the relation on A defined by xRy if and only	07	L2	CO3
		if $x < y$. Write down R as a set of ordered pairs. Write the relation matrix			
		and draw the digraph. List out the in degrees and out degrees of every			
		vertex			000
	c.	Let $A = \{1, 2, 3, 6, 9, 12, 18\}$ and define R on A by xRy iff 'x divides y'.	07	L2	CO3
		Prove that (A, R) is a POSET. Draw the Hasse diagram for (A, R).			
L		Module – 4			001
Q.7	a.	How many integers between 1 and 300 (inclusive) are divisible by	06	L3	CO4
		(i) at least one of 5, 6 or 8. (ii) None of 5, 6 and 8.	1.0-		001
	b.	At a restaurant 10 men handover their umbrellas to the receptionist, In how	07	L3	CO4
		many ways can their umbrellas be returned so that (1) no man receives his			
		own umbrella. (ii) atleast one gets his own umbrella. (iii) atleast two gets			
		their own umbrellas.			
	c.	The number of virus affected files in a system is 1000 (to start with) and	07	L3	CO4
		this increases by 250% every 2 hours. Use a recurrence relation to			
		determine the number of virus affected files in the system after 12 hours.			
		OR OR			
Q.8	a.	In how many ways one can arrange the letters of the word	06	L3	CO4
-		"CORRESPONDENTS" so that there are (i) no pair (ii) atleast 2 pairs of			
		consecutive identical letters.			<u> </u>
	b.	4 persons P_1 , P_2 , P_3 , P_4 who arrive late for a dinner party find that only	07	L3	CO4
		one chair at each of five tables T_1 , T_2 , T_3 , T_4 and T_5 is vacant. P_1 will not			
		sit at T_1 or T_2 . P_2 will not sit at T_2 . P_3 will not sit at T_3 or T_4 . P_4 will not sit			
		at T_4 or T_5 . Find the number of ways they can occupy the vacant chairs.		10.00 0000	
	c.	Solve the recurrence relation	07	L2	CO4
		$a_n - 6a_{n-1} + 9a_{n-2} = 0$ for $n \ge 2$ with $a_0 = 5$, $a_1 = 12$.			
		Module – 5	1	T	
Q.9	a.	If $*$ is an operation on Z defined by $xy = x + y + 1$, prove that (Z, $*$) is an	06	L2	C05
		abelian group.			
	b.	Explain Klein-4 group with example.	07	L2	C05
	c.	State and prove Lagrange's theorem.	07	L2	C05
		OR			
Q.10	a.	Prove that intersection of two subgroups of a group G is also a subgroup of	06	L2	CO5
		G.			
*	b.	Prove that $(\mathbb{Z}_4, +)$ is a cyclic group. Find all its generators.	07	L2	C05
			07	L3	CO5
	c.	Let G = S ₄ for $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$			
		Find the subgroup $H = \langle \alpha \rangle$ determine the left cosets of H in G.			

ø