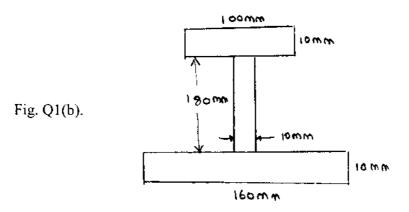


Second Semester B. Arch Degree Examination, June/July 2015

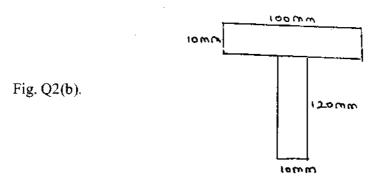
Building Structures - II

Time: 4 hrs.


Max. Marks:100

Note: Answer any FIVE full questions, Choosing one question from each module. MODULE I

1 a. Define centroid and difference between centroid and centre of gravity.


(06 Marks)

b. Locate the centroid of the beam in Fig. Q1(b).

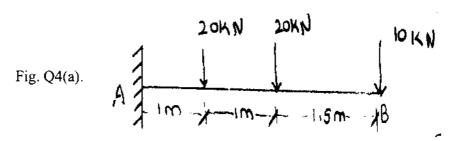
(14 Marks)

- 2 a. Explain the concept and significance of moment of inertia and the parallel axis theorem of moment of inertia. (06 Marks)
 - b. Find the moment of inertia about centroidal axis in Fig Q2 (b)

(14 Marks)

MODULE II

a. Define shear force and bending moment with sign convention.


(06 Marks)

b. Compute Reactions and draw shear force and B.M.D in Fig Q3 (b).

(14 Marks)

4 a. Calculate share force and banding moment. Draw SFD and BMD for Fig Q4(a). (14 Marks)

b. Draw share stress diagrams for symmetrical I - Section, T - sections of Rectangular sections. (06 Marks)

MODULE III

5 a. Define section modules in theory of bending.

(05 Marks)

- A beam having hollow rectangular section with dimensions 120 × 120mm with a uniform wall thickness of 10mm and is simply supported for length 6mt. If the beam carries UDL of 1.2 kN/m, determine the maximum bending stress.
- 6 a. Determine the deflection for a cantilever beam @ free end with concentrated load 'W'@ free end. Given W = 30kN, L = 3m, $E = 2 \times 10^5 \text{ N/mm}^2$, $I = 2 \times 10^8 \text{ mm}^4$. (10 Marks)
 - b. A cast iron beam 40mm wide and 80mm deep is simply supported on a span of 1.2m. The beam carries a point load of 15kN @ the centre. Find the deflection @ the centre.

 Take E = 108000 N/mm². (10 Marks)

MODULE IV

7 a. What is the difference between short column and long column

(06 Marks)

- b. A mild steel tube 4mt long 30mm internal diameter and 4mm thick is used as s strut with both ends hinged. Find the collapsing load $E = 2.1 \times 10^5 \text{ N/mm}^2$. (14 Marks)
- 8 a. Define Slenderness ratio.

(06 Marks)

b. Determine the Euler's crippling load for an I section column 400×200×10mm, having a length of 5mt, which is used as a strut with both ends fixed,

Take
$$E = 2.1 \times 10^5 \text{ N/mm}^2 \text{ FS} = 3.$$

(14 Marks)

MODULE V

- 9 The cross section of a square concrete column is 500 × 500mm with 8 vertical, 12mm φ bars. Determine the strength of column w.r.t steel and concrete separately for the given stresses in steel and concrete. Stresses are
 - i) $415N/mm^2$ (steel), $20\frac{N}{mm^2}$ (concrete)
 - ii) $500 \frac{N}{mm^2}$ (steel), $25 \frac{N}{mm^2}$ (concrete)

iii)
$$250 \frac{N}{mm^2}$$
 (steel), $15 \frac{N}{mm^2}$ (concrete) (20 Marks)

14ENG2.5

10 A circular cross section of 350mm diameter size is reinforced with 6 vertical bases of 20mm diameter. Determine the strength of concrete and steel with following data.

i)
$$fy = \frac{250 \text{ N}}{\text{mm}^2}$$
, $fck = \frac{15 \text{ N}}{\text{mm}^2}$

ii) fy =
$$415 \frac{N}{mm^2}$$
, fck = $\frac{20N}{mm^2}$

iii) fy =
$$500 \frac{N}{mm^2}$$
, fck = $25N/mm^2$
Fy \rightarrow stress in steel
Fck \rightarrow stress in concrete.

(20 Marks)