USN

Second Semester B.Arch. Degree Examination, Dec.2015/Jan.2016 **Building Structures - II**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, Choosing one from each module.

MODULE - I

1 a. Define centre of gravity and centroid.

(04 Marks)

b. Determine the location of the centroid, shown in Fig Q1(b)

(16 Marks)

2 a. State parallel axis theorem and explain in brief.

(04 Marks)

b. Find the moment of inertia and radius of gyration about centroidal axes for a rectangular beam of size 150mm wide and 300mm depth. Also find radius of gyration. (16 Marks)

MODULE - II

3 a. Draw SFD and BMD for the cantilever beam shown in Fig.Q3(a).

(10 Marks)

b. Draw SFD and BMD for the S.S beam shown in Fig. Q3(b)

(10 Marks)

4 a. Draw SFD and BMD for the cantilever beam shown in Fig Q4(a)

(10 Marks)

b. Draw SFD and BMD for the S.S beam shown in Fig. Q4(b)

(10 Marks)

MODULE - III

- 5 a. List out the assumptions made in theory of simple bending. (04 Marks)
 - b. Calculate maximum stress induced in a steel pipe of external diameter 40mm and internal diameter 20mm and of length 4m. When the pipe is simply supported at its ends and carries a point load of 80N at its centre.

 (16 Marks)
- 6 a. Provide the expression for finding out section modulus for
 i) Rectangular section
 ii) Hollow rectangular section
 iii) circular section

iv) Hollow circular section. (04 Marks)

b. Calculate R_1 , R_2 , V_1 , V_2 , M_1 and M_2 with usual notations and mark these values into the given Fig. Q6(b) where P = 1000N and $\ell = 1m$. Also find bending stress if $I = 2235 \times 10^3 \text{mm}^4$ and D = 400 mm.

Fig. Q6(b)

MODULE - IV

7 a. Differentiate between short and long column.

(U4 Marks)

- b. A solid round bar 3m long and 50mm diameter is used as a strut. Determine the crippling load, when the given strut is used with the following conditions. Take $E = 2 \times 10^5 \text{ N/mm}^2$
 - i) Both ends Hinged
 - ii) One end fixed and other end is free
 - iii) Both the ends are fixed
 - iv) One end fixed and other is hinged.

(16 Marks)

- 8 a. Define: i) Column ii) Slenderness ratio iii) Buckling load iv) Safe load. (04 Marks)
 - b. A column of timber section is of $150 \text{mm} \times 200 \text{mm}$ is 6m long both ends being fixed. If $E = 17.5 \times 10^3 \text{ N/mm}^2$, determine i) Crippling load ii) Safe load, if Fs = 3 (16 Marks)

MODULE - V

- Calculate the maximum load that can be carried by $400 \text{mm} \times 400 \text{mm}$ square column reinforced with 8 bars of 22mm dia. Use $\sigma_{cc} = 5 \text{ N/mm}^2$ and $\sigma_{sc} = 190 \text{N/mm}^2$. (20 Marks)
- Calculate the load carrying capacity of a column $300\text{mm} \times 400\text{mm}$ reinforced with 6bars of 16mm dia. Use M 20 and Fe 415 grade of concrete and steel respectively. Also find allowable service load if Fs = 1.50. (20 Marks)

* * * * *