

Third Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Data Structures and Applications

Time: 3 hrs.

6

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		Module 1	Μ	L	C
Q.1	a.	Define Data Structures. Explain with neat block schematic different type of data structures with examples. What are the primitive operations that can be performed?	10	L2	CO 1
	b.	Differentiate between structures and unions shown examples for both.	5	L1	CO1
	c.	What do you mean by pattern matching? Outline knuth, Morris, Pratt pattern matching algorithm.	5	L2	CO1
		OR		1	
Q.2	a.	Define stack. Give the implementation of Push (), POP () and display () functions by considering its empty and full conditions.	7	L2	CO1
	b.	Write an algorithm to evaluate a postfix expression and apply the same for the given postfix expression 6, 2, /, 3, -, 4, 2, $*$, +	- 7	L3	C01
	c.	Write the Postfix form of the following using stack : (i) A*(B*C+D*E) + F (ii) (a + (b*c) / (d-e))	6	L3	CO1
		Module – 2			
Q.3	a.	What are the disadvantages of ordinary queue? Discuss the implementation of circular queue.	8	L2	CO2
	b.	Write a note on multiple stacks and priority queue.	6	L2	CO2
	c.	Define Queue. Discuss how to represent queue using dynamic arrays.	6	L2	CO2
	1	OR	I		
Q.4	a.	What is a linked list? Explain the different types of linked lists with neat diagram.	4	L2	CO2
	b.	 Give the structure definition for singly linked list (SLL). Write a C function to, (i) Insert on element at the end of SLL. (ii) Delete a node at the beginning of SLL. 	8	L3	CO2
	.	Write a C-function to add two polynomials show the linked list representation of below two polynomials $p(x) = 3x^{14} + 2x^8 + 1$ $q(x) = 8x^{14} - 3x^{10} + 10x^6$	8	L3	CO2
	-	Module – 3			
Q.5	a.	 Write a C-function for the following operations on Doubly Linked List (DLL): (i) addition of a node. (ii) concatenation of two DLL. 	8	L3	CO3
	b.	 Write C functions for the following operations on circular linked list : (i) Inserting at the front of a list. (ii) Finding the length of a circular list. 	8	L3	CO3

1 of 2

			BCS	
c.	For the given sparse matrix, give the diagrammatic linked representation.	4	L3	CO3
	$\begin{bmatrix} 2 & 0 & 0 \end{bmatrix}$			J
	4 0 0 3			
	OR	- T	1	
).6 a.	Discuss how binary tree are represented using,	6	L2	CO3
2.0	(i) Array (ii) Linked list			
b	the standar and large order traversal with suitable	8	L2	CO3
U	recursive function for each.			
	p. r. m. 1 1 Divers Tree Diamon In Threaded hinary Tree	6	L2	CO3
C.				
	Module – 4	e 8	L3	CO4
Q.7 a			10	
	(BST): (i) Inserting an element into BST.			
	 (i) Inserting an element into BS1. (ii) Recursive search of a BST. 			
		8	L2	CO4
b	Discuss selection Trees with an example.			
C	Explain Transforming a first into a binary tree with an example.	4	L2	CO4
	OR			
Q.8 8	a. Define graph. Show the adjacency matrix and adjacency list representation	n 6	L3	CO4
2.0 1	of the graph given below (Refer Fig. Q8 (a)).			
		Y.		
	Fig. Q8 (a)			
		_		
1	b. Define the following Terminologies with examples,	8	L1	CO4
	(i) Digraph			
	(ii) Weighted graph			
	(iii) Self loop			
	(iv) Parallel edges			
	c. Explain in detail elementary graph operations.		5 L2	CO4
	Module – 5			
Q.9	a. What is collision? What are the methods to resolve collision? Explain line	ar '	7 L2	CO
Q.9	probing with an example.			
			6 L2	CO
	b. Explain in detail, about static and dynamic hashing.			
	c. Discuss Leftist Trees with an example.		7 L2	
	OR			
Q.10	a. Explain different types of HASH function with example.	er - 1 (s-4	6 L.	2 CO
	b. Discuss AVL tree with an example. Write a function for insertion into	an	6 L.	CO
	AVL Tree.			
	D. G. D. 111 DTrue Onlaw tree Discuss the method to insert an eleme	ent	8 L	2 CO
	c. Define Red-black Tree, Splay tree. Discuss the method to insert an element			
	into Red-Black tree.			

	2 of 2			
	, #			

.