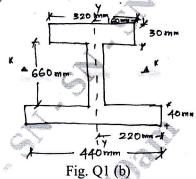
Second Semester B.Arch. Degree Examination, Aug./Sept. 2020 **Building Structures** – II

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

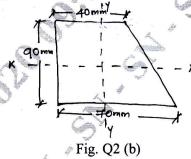

Module-1

- 1 a. Explain the following briefly:
 - (i) Centroid
- (ii) Moment of inertia
- (iii) Section modulus

(iv) Radius of gyration

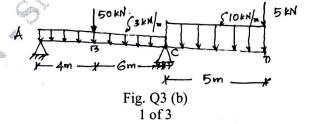
(10 Marks) (10 Marks)

b. Locate the centroid for the figure shown below:



OR

a. Derive parallel axis theorem.


- (10 Marks)
- b. Find moment of inertia along X-X axis as indicated in the Fig. Q2 (b).

(10 Marks)

Module-2

- 3 a. Explain shear force diagram and bending moment diagram with sign conventions. (06 Marks)
 - b. Draw shear force diagram and bending moment diagram for the following figure Fig. Q3(b).
 (14 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Derive bending equation.

(10 Marks)

A Cantilever is 3 m long with 150 × 230 mm rectangular cross-section carries a concentrated load of 40 kN at the end. What maximum bending stress will be developed at the base of the (10 Marks) cantilever?

Module-

A simply supported beam spans 4 m and carries Udl of 2 kN/m. Compare stresses for the following sections taking moment of inertia along X-X axis as indicated. (14 Marks)

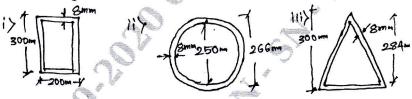
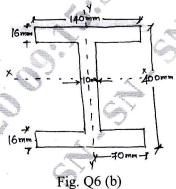



Fig. Q5 (a)

Find the section modulus for the above figures at maximum compressive stress level. (06 Marks)

- A timber beam spans 4 m carries a Udl of 4 kN/m, 100×200 mm timber section is used if 6 the modulus of elasticity in the timber is $E = 0.125 \times 10^5$ N/mm². Find the maximum (10 Marks) deflection in the timber beam.
 - b. A simply supported steel beam shown in Fig. Q6 (b) is used to span 5 m and carries a load of 25 kN/m including its own weight. Calculate the maximum deflection in the beam. If (10 Marks) modulus of elasticity is $E = 2.1 \times 10^5 \text{ N/mm}^2$

Module-4

- What is the difference between short column and long column? (06 Marks)
 - Determine Euler's crippling load for an I-section column 400×200×10 mm having length of 5 m. Which is used as strut with both ends fixed. Take $E = 2.1 \times 10^5 \text{ N/mm}^2$. (14 Marks)

OR

- What is slenderness ratio? How does this affect the design of column? 8
 - Determine the section of a cast iron hollow cylindrical column 3 m long with both ends firmly built in. It carries a working Axial load of 800 kN. The ratio of internal to external diameter is $\frac{5}{8}$. Use factor of safety as 4. (14 Marks)

Module-5

The cross section of a short axially loaded square concrete column is 500 × 500 mm with 8 vertical bars of 12 mmφ. Determine the strength of column with respect to steel and concrete separately for the given stresses in steel and concrete. Stresses are,

- (i) $f_y = 415 \text{ N/mm}^2$, $f_{CK} = 20 \text{ N/mm}^2$
- (ii) $f_y = 500 \text{ N/mm}^2$, $f_{CK} = 25 \text{ N/mm}^2$
- (iii) $f_y = 250 \text{ N/mm}^2$, $f_{CK} = 15 \text{ N/mm}^2$

 f_y - Stress in steel, f_{CK} - Stress in concrete

(20 Marks)

OR

A short axially loaded circular column of 350 mm diameter is reinforced with 6 longitudinal bars of 20 mmφ. Determine the strength of concrete and steel with the following data:

- (i) $f_y = 250 \text{ N/mm}^2$, $f_{CK} = 15 \text{ N/mm}^2$
- (ii) $f_y = 415 \text{ N/mm}^2$, $f_{CK} = 20 \text{ N/mm}^2$
- (iii) $f_y = 500 \text{ N/mm}^2$, $f_{CK} = 25 \text{ N/mm}^2$

 f_y - Stress in steel, f_{CK} - Stress in concrete

(20 Marks)