

## Third Semester B.E./B.Tech Degree Examination, Dec.2023/Jan.2024 Engineering Thermodynamics

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M : Marks, L: Bloom's level, C: Course outcomes.
3. Use of Thermodynamics Data handbook is permitted.

|     |     | Module – 1                                                                                                             | Μ  | L  | C           |
|-----|-----|------------------------------------------------------------------------------------------------------------------------|----|----|-------------|
| Q.1 | a.  | Distinguish between :                                                                                                  | 10 | L2 | CO2         |
|     |     | i) Microscopic and macroscopic approach                                                                                |    |    |             |
|     |     | ii) Intensive and extensive properties                                                                                 |    |    |             |
|     |     | iii) Open and closed system                                                                                            |    |    |             |
|     |     | iv) Path and point functions                                                                                           |    |    |             |
|     |     | v) Cyclic and non-cycle process.                                                                                       |    |    |             |
|     | b.  | From the fundamental concepts of temperature scale, for water deduce                                                   | 10 | L3 | CO3         |
|     |     | T(K) = $273 + 100 \left( \frac{L - L_I}{L_S - L_I} \right)$ , taking appropriate ice point (L <sub>1</sub> ) and steam |    |    |             |
|     |     |                                                                                                                        |    |    |             |
| a.  |     | point (L <sub>s</sub> ).                                                                                               |    |    |             |
|     | 1   | OR                                                                                                                     | 10 |    |             |
| Q.2 | a.  | Write thermodynamic definition of work and heat, and their sign                                                        | 10 | L2 | CO3         |
|     |     | conventions. Mention any two similarities and dissimilarities between them.                                            |    |    |             |
|     | b.  | In an IC Engine, gas expands from 13MPa and 200cm <sup>2</sup> to 1300cm <sup>3</sup> ,                                | 10 | L3 | CO2         |
|     |     | polytropically with an expansion index, $n = 1.45$ . Show this process on an                                           |    |    |             |
|     |     | P-V diagram and calculate the expansion work. Comment on the results.                                                  |    |    |             |
|     |     | Module 2                                                                                                               |    |    |             |
| Q.3 | a.  | State the first law of thermodynamics, and explain with a schematic                                                    | 10 | L2 | CO2         |
|     |     | diagram, Joule's experiment to support it.                                                                             |    |    |             |
|     | b.  | From the fundamentals, derive steady flow energy equation for an open                                                  | 10 | L3 | CO3         |
|     |     | system. State the assumptions made.                                                                                    |    |    |             |
|     |     | OR                                                                                                                     | 1  |    | 1           |
| Q.4 | a.  | Establish the equivalence of Kelvin - Planck and Clausius statements of                                                | 10 | L2 | CO2         |
|     | _   | second law of thermodynamics.                                                                                          |    |    |             |
|     | b.  | A heat engine is designed to operate between 327°C and 27°C ambient,                                                   | 10 | L3 | <b>CO</b> 4 |
|     |     | receiving 450kJ of heat in a single cycle. Verify the Clausius inequality for                                          |    |    |             |
|     |     | the following hypothetical conditions :                                                                                |    |    |             |
|     | , e | i) 315 kJ/cycle heat rejected                                                                                          |    |    |             |
|     |     | ii) 210kJ/cycle heat rejected                                                                                          |    |    |             |
|     |     | iii) 105 kJ/cycle heat rejected.                                                                                       |    |    |             |
|     |     | Module – 3                                                                                                             |    |    |             |
| Q.5 | a.  | Define entropy and explain the principle of increase of entropy, using                                                 | 10 | L2 | CO2         |
|     |     | appropriate plots.                                                                                                     | 10 | TA | 000         |
|     | b.  | A 5kg copper block at 200°C is dropped into an insulated tank containing                                               | 10 | L3 | CO3         |
|     |     | 100kg of oil at 30°C. Find the increase in entropy of the universe during                                              |    |    |             |
|     |     | this process, after thermal equilibrium is reached. Assume C <sub>p</sub> for                                          |    |    |             |
|     |     | $copper = 40J/kg.K, C_p for oil = 2.1KJ/kg.K.$                                                                         |    |    |             |
|     |     |                                                                                                                        |    |    |             |

|      |    |                                                                                                                                                                                                                                                                                                                                                                                                             |    | BAU304 |      |  |
|------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|------|--|
|      |    |                                                                                                                                                                                                                                                                                                                                                                                                             |    |        | ÷    |  |
|      |    | OR                                                                                                                                                                                                                                                                                                                                                                                                          | 10 | T A    | COI  |  |
| Q.6  | a. | Use a P-T plot and represent fusion line, vaporization line, critical point and<br>triple point. Further, define :<br>i) Critical point<br>ii) Triple point                                                                                                                                                                                                                                                 | 10 | L2     | CO3  |  |
|      |    | iii) Superheated vapour<br>iv) Subcooled liquid.                                                                                                                                                                                                                                                                                                                                                            |    | 8      |      |  |
|      | b. | A spherical shell of 80cm diameter contains a mixture of saturated steam<br>and water at 250°C. Calculate the mass of each if their volumes are equal.                                                                                                                                                                                                                                                      | 10 | L3     | CO4  |  |
|      |    | Module – 4                                                                                                                                                                                                                                                                                                                                                                                                  | 10 |        | 000  |  |
| Q.7  | a. | Sketch and explain the working of a vapour absorption refrigeration system. Label all the major components.                                                                                                                                                                                                                                                                                                 | 10 | L2     | CO2  |  |
|      | b. | Using a schematic sketch, explain the working of a vapour compression refrigeration system and analyze the same for condenser, evaporator and compressor work.                                                                                                                                                                                                                                              | 10 | L4     | CO3  |  |
|      |    | OR                                                                                                                                                                                                                                                                                                                                                                                                          |    |        |      |  |
| Q.8  | а. | Define the following terms :<br>i) Ton of refrigeration<br>ii) Wet bulb temperature<br>iii) Specific humidity<br>iv) COP<br>v) Dew point temperature.                                                                                                                                                                                                                                                       | 10 | L2     | CO3  |  |
|      | b. | Determine :<br>i) Partial pressure of dry air<br>ii) Specific humidify<br>iii) Mass of water vapour and dry air<br>iv) Relative humidity, for a mixture of dry air and water vapour at 16°C.<br>The partial pressure of water vapour is 1.817kN/m <sup>2</sup> .At 22°C DBT, the<br>saturation pressure of water vapour is 2.64kN/m <sup>2</sup> . Assume<br>atmospheric pressure as 100kN/m <sup>2</sup> . | 10 | L4     | CO2  |  |
|      |    | Module – 5                                                                                                                                                                                                                                                                                                                                                                                                  | 10 | 12     | CO   |  |
| Q.9  | a. | Analyze a standard otto cycle and show that its thermal efficiency is a function of volume compression ratio and isentropic index $\gamma$ .                                                                                                                                                                                                                                                                |    |        |      |  |
|      | b. | <ul> <li>A Carnot engine rejects heat to the sink at 32°C and has a thermal efficiency of 52.3%. The work output from the engine is 120kJ. Determine:</li> <li>i) The maximum working temperature of the engine</li> <li>ii) The heat added in kJ</li> <li>iii) The change in entropy during heat rejection.</li> </ul>                                                                                     | 10 | L3     | CO4  |  |
|      |    | OR                                                                                                                                                                                                                                                                                                                                                                                                          |    |        | 0.00 |  |
| Q.10 | a. | With a schematic diagram explain how air consumption is measured in an IC engine using an air-box method.                                                                                                                                                                                                                                                                                                   |    |        | CO   |  |
|      | b. | A six cylinder 4-stroke IC engine develops 60KW of IP at mean effective<br>pressure of 7 bar. The bore and stroke of the engine is 70mm and 100mm<br>respectively. If the engine speed is 3700rpm, find :<br>i) Average misfires/min<br>ii) Actual power developed.                                                                                                                                         |    | L3     | CO   |  |
|      | L  | ****<br>2 of 2                                                                                                                                                                                                                                                                                                                                                                                              |    |        |      |  |
|      |    |                                                                                                                                                                                                                                                                                                                                                                                                             |    |        |      |  |