

First Semester M.Tech. Degree Examination, Dec.2023/Jan.2024 Advanced Engineering Mathematics

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

	Module – 1	M	L	C
Q.1 a.	Find the inverse of the following matrix, $A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix}$, using the partition method. Also, find the solution of the system of equations, $x_1 + x_2 + x_3 = 1$ $4x_1 + 3x_2 - x_3 = 6$ $3x_1 + 5x_2 + 3x_3 = 4$	10	L2	C01
b .	Use the Given's method to reduce the following matrix to tridiagonal form $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 4 & 2 \\ 3 & 2 & 3 \end{bmatrix}$	10	L3	CO1
	OR	10	L2	C01
Q.2 a.	Solve the following equations by using Relaxation method 9x - 2y + z = 50 x + 5y - 3z = 18 -2x + 2y + 7z = 19 Find all the eigenvalues and eigenvectors of the matrix,	10	L3	CO1
	$A = \begin{bmatrix} 1 & 1 & 0.5 \\ 1 & 1 & 0.25 \\ 0.5 & 0.25 & 2 \end{bmatrix}$ by using Given's method.			
<u></u>	Module – 2		1	
Q.3 a.	Define: (i) Vector space (ii) Subspace. Show H is a subspace of V where $V = \{V_1, V_2\}$ and $H = \text{Span } \{V_1, V_2\}$.	07	L1	CO2
b.	If W_1 and W_2 are subspaces of the vector space V(F) then show that: (i) $W_1 + W_2$ is a subspace of V(F) (ii) $W_1 + W_2 = \{W_1 \cup W_2\}$.	07	L1	CO2
c.	Show that the three vectors $(1, 1, -1)$, $(2, -3, 5)$ and $(-2, 1, 4)$ of \mathbb{R}^3 are linearly independent.	06	L2	CO2
	, OR			

					001
2.4		Define a linear transformation. A transformation 1	07	L3	CO2
		T(x) = Ax, so that			
	* 3 at	$\begin{vmatrix} 1 & -3 \end{vmatrix} \begin{bmatrix} x_1 & -3x_2 \end{bmatrix}$		N ¹	
		$T(x) = Ax = \begin{vmatrix} 3 & 5 \end{vmatrix} \begin{vmatrix} x_1 \\ z \end{vmatrix} = \begin{vmatrix} 3x_1 + 5x_2 \end{vmatrix}$ and $b = \begin{vmatrix} 2 \\ z \end{vmatrix}$, $c = \begin{vmatrix} 2 \\ z \end{vmatrix}$.	1.5		
	i pa	$T(x) = Ax = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix} \text{ and } b = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}, \ c = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}.$			
		Find:(i) T(u), the image of u under the transformation T.			
		 (ii) Find an x in R² whose image under T is 0. (iii) Determine whether c is in the range of transformation T. 			
e Sin					
	h	Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Prove that T is one-to-one if	07	L1	CO2
	b.	and only if the equation $T(x) = 0$ has only the trivial solution.		he i be	
					001
	c.	Show that the vectors $(1, 2, 1)$, $(2, 1, 0)$, $(1, -1, 2)$ form a basis of \mathbb{R}^3 .	06	L2	CO2
		Module – 3	10	1.2	CO3
Q.5	a.	Find an orthonormal basis of a subspace R^3 spanned by the vectors	10	L3	CUS
		$S = \{u_1 = (1, 1, 1), u_2 = (-1, 0, -1), u_3 = (-1, 2, 3)\}$ by applying	, ".»		× *
	199 174 - 199	Gram-Schmidt orthogonalization process.	M, inst		
			10	L2	CO3
	b.	Find the QR decomposition of the matrix,	10		
		$\mathbf{A} = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$			
		$A = \begin{vmatrix} 1 & -1 & 0 \end{vmatrix}$	1.01		
			·		1
		by applying Gram-Schmidt method.			
		OR			
0.6	1	Determine a least squares solution to $Ax = b$, where	10	L2	CO:
Q.6	a.	$\begin{bmatrix} 1 & 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$			
				a a 1 a	
	120 S 114 15 ²⁰⁰	$\begin{vmatrix} -2 & 3 & 4 & 1 \end{vmatrix}$			
		$ A_{x} = 4 2 1 0 , 0- 1 $			
			te an		
and the second		Find the singular value decomposition of the given matrix,	10	L3	СО
	b.	Find the singular value decomposition of			
	i interna Maria interna	$\begin{vmatrix} A = \\ 2 & 3 & -2 \end{vmatrix}$			
		Module – 4	07	L3	CO
Q.7	a.		07	LS	
		following events:			
		(i) Exactly 3 heads occurred			
				1	1.
		 (ii) Atleast 3 heads occurred (iii) Atleast 3 heads and atleast 2 tails occurred. 			1.11

 \sim

<u>elonar cons</u> Trig	b.	A Gaussian random variable has a probability density function of the form	07	L3	CO4
		 f_x(x) = c exp[(-2x² + 3x + 1)]. (i) Find the value of the constant c. (ii) Find the values of the parameter m and σ for this Gaussian random variable. 			
	c.	The current (in mA) measured in a piece of copper wire is known to follow a uniform distribution over the interval $[0, 25]$. Write down the formula for the probability density function $f(x)$ of the random variable X representing the current. Calculate the mean and variance of the distribution.	06	L2	CO4
		OR			
Q.8	a.	In a normal distribution 15% items are below 35 and 10% items are above 65. Find the mean and standard deviation, $\oint (1.04) = 0.35$ and $\oint (1.28) = 0.4$.	07	L2	CO4
	b .	The joint probability distribution of two random variables X and Y is as follows: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	07	L3	CO4
	c.	The probability that a news reader commits no mistake in reading news is $1/e^3$. Find the probability that on a particular news broadcast. The reader commits: (i) only 2 mistakes (ii) more than 3 mistakes (iii) atmost 3 mistakes	06	L2	CO
		Module – 5			
Q.9	a.	Define: (i) Characteristic function (ii) Moment generating function (iii) Probability generating function Find the probability generating function of $f(x)$ given by $f(x) = \frac{e^{-\lambda}\lambda^x}{x!}$, x = 0, 1, 2,	07	L1	CO
	b .	 Suppose a source sends symbols from a three-letter alphabet with X ∈ {a,b,c} and P_a = 1/2, P_b = 1/4, P_c = 1/4 are the source symbol probabilities. (i) Determine the entropy of this source. (ii) Give a source code that has an average code word length that matches the entropy. 	07	L2	CO
	c .	Calculate the mean and second moment for a random variable with a uniform probability density function given as $f_{X}(x) = \begin{cases} 1/a, & 0 \le x \le a \\ 0, & \text{otherwise} \end{cases}$	06	L3	CO

Q.10	a.	Let c_n be the n th central moment of a random variable and μ_n be its n th moment. Find a relationship between c_n and μ_k , k = 0, 1, 2, n.	07	L1	C05
	b.	Calculate the first moment and second moment for a discrete random variable that has a binomial distribution with probability mass function given by, $P_x(k) = \binom{n}{k} p^k (1-p)^{n-k}, \ k = 0, 1, 2,, n$	07	L2	CO5
	c.	If 'x' be a random variable with probability generating function $P_x(t)$, find the probability generating function of (i) $x + 2$ (ii) $2x$.	06	L2	CO5

Conserved and

5

Ś