

|--|

21MR62

Sixth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Marine Thermal Engineering

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain the modes of heat transfer with governing laws.

(10 Marks)

b. Derive general heat conduction equation in Cartesian coordinates.

(10 Marks)

OR

2 a. Explain the boundary conditions of heat transfer.

(10 Marks)

b. A steel rod of diameter D=2cm, L=25cm and thermal conductivity K=50W/m-K is exposed to ambient air at $T_{\infty}=20^{\circ}C$ with a heat transfer co-efficient $h=64W/m^{2}K$. If one end of the rod is maintained at a temperature of 120°C, calculate the heat loss from the rod considering it as i) Long fin ii) Insulated end. (10 Marks)

Module-2

3 a. With a neat sketch, explain velocity boundary layer and thermal boundary layer. (10 Marks)

b. A vertical cylinder 1.5m high and 180mm in diameter is at 100°C in atmospheric temperature of 20°C. Calculate heat loss by free convection. Properties of air at mean temperature as $p = 1.06 \text{ kg/m}^3$, $v = 18.97 \times 10^{-6} \text{ m}^2/\text{s}$, $c_p = 1.004 \text{ kJ/kg°C}$ and K = 0.1042 kJ/mh°C.

OR

- 4 a. Explain the following dimensionless numbers and their physical significance.
 - i) Reynolds number (Re)
 - ii) Prandtl number (Pr)
 - iii) Nusselt number (Nu)
 - iv) Stanton number (st)

(10 Marks)

b. Air at atmospheric pressure and 40°C flows with a velocity of U = 5 m/s over a 2 m long flat plate whose surface is kept at a uniform temperature of 120°C. Determine the average heat transfer coefficient over the 2 m length of the plate. Also find out the rate of heat transfer between the plate and the air per 1 m width of the plate.

Given [at 80°C $v = 2:107 \times 10^{-5} \text{ m}^2/\text{s}$, k = 0.03025 W/mK, pr = 0.6965]

(10 Marks)

Module-3

5 a. Define heat exchanger and write the classifications.

(05 Marks)

b. Explain fouling factor in heat exchangers.

(05 Marks)

c. Exhaust gases flowing through a heat exchanger at the rate of kg/min are cooled from 400°C to 120°C by water initially at 10°C. Specific heat of gases may be taken as 1.13 kJ/kg-K and

 $U = 502.3 \frac{kJ}{m^2 - hr - k}$. If water flow rate is 25 kg/min. Calculate the surface area needed for

parallel flow heat exchanger.

(10 Marks)

OR

6 a. Explain the concept of black body.

(05 Marks)

b. Explain Stefan-Boltzman law and Wein's displacement law.

(05 Marks)

c. Determine the heat lost by radiation per meter length of 8 cm diameter pipe at 300°C if
i) Enclosed in a 16 cm diameter red brick duct at a temperature of 27°C ii) Located in a large room with walls at a temperature of 27°C. ∈(steel pipe) 0.79, ∈(brick conduct) = 0.93.
(10 Marks)

Module-4

- 7 a. With help of a neat sketch explain vapour compression refrigeration. (10 Marks)
 - b. A carnot refrigerator requires 1.3 kW per tonne of refrigeration to maintain a region at low temperature of -38°C. Determine:
 - i) COP of carnot refrigerator
 - ii) Higher temperature of cycle
 - iii) Heat delivered and COP when this device is used as heat pump.

(10 Marks)

OR

8 a. Explain the desirable properties of refrigerant.

(10 Marks)

b. A refrigeration machine is required to produce i.e at 0°C from water at 20°C. The machine has a condenser temperature of 298K while the evaporator temperature is 268 K. The relative efficiency of the machine is 50% and 6 kg of Freon – 12 refrigerant is circulated through the system per minute. The refrigerant enters the compressor with a dryness fraction of 0.6 specific heat of water is 4.187 kJ/kg K and the latent heat of Ice is 335 kJ/kg. Calculate the amount of ice produced in 24 hrs. The table of properties of freon-12 is given below.

Temperature K	Liquid heat kJ/kg	Latent heat kJ/kg	Entropy of liquid kJ/kg
298	59.7	138.0	0.2232
268	31.4	154.0	0.1251

(10 Marks)

Module-5

- 9 a. Explain: i) Specific humidity v) DBT.
- ii) Relative humidity
- iii) Degree of saturation iv) DPT (10 Marks)
- b. The atmospheric conditions are: 20°C and specific humidity of 0.0095 kg/kg of air.

 Calculate: i) Partial pressure of vapour ii) Relative humidity iii) Dew point temperature. (10 Marks)

OR

10 a. With a neat sketch explain hot and humid outdoor conditions.

(10 Marks)

b. The air supplied to a room of a building in winter is to be at 17°C and have a relative humidity of 60%. If the pressure is 1.01325 bar find: i) Specific humidity ii) Dew point temperature. (10 Marks)

* * * * *