

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Thermodynamics

Time: 3 hrs.

G

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

3. Use of Thermodynamics Data Handbook is permitted.

		Module – 1	Μ	L	С	
Q.1	a.	State and explain Zeroth law of thermodynamics.	4	L2	CO1	
	b.	Two Celcius thermometr A and B agree at ice point and steam point and the related equation is $t_A = \alpha + Mt_B + N t_B^2$ where L, M and N are constants. When both the thermometer are immersed in a fluid. A registers 26°C while B registers 25°C. Determine the reading of A when B reads 37.4°C.	10	L3	CO1	
	c.	Define Point function and path function. Prove that heat is path function.	6	L2	CO1	
OR CAN						
Q.2	a.	Derive and expression for displacement work for polytropic process.	8	L3	CO1	
	b.	A fluid at 0.7 bar occupying 0.09 m ³ is compressed reversibly to a pressure of 3.5 bar according to a law PV^n = constant. The fluid is then heated reversibly at constant volume until the pressure is 4 bar, the specific volume is then 0.5 m ³ /kg. A reversible expansion according to a law $PV^2 = C$, restores the fluid to its initial state. Sketch the cycle on a P-V diagram and calculate : i) the mass of fluid present ii) the value of 'n' in the first process iii) the network of the cycle.	12	L3	CO1	
		Module – 2				
Q.3	a.	State the 1 st law of thermodynamic for a closed system undergoing a cycle and prove that internal energy is property.	6	L2	CO2	
	b.	Explain all the terms involved in Steady Flow Energy Equation (SFEE).	6	L2	CO2	
	c.	A small turbine runs an aircraft refrigeration system. Air enters the turbine at 4 bar and 40°C with a velocity of 40 m/s. At the exit the air is at 1 bar, 25°C and having a velocity of 200m/s. If the work output of a turbine is 52 kJ/kg of air, calculate the heat transferred per kg of air.	8	L3	CO2	
		OR				
Q.4	a.	Define the two statements of II law of thermodynamic. Show that violation of Clausius statement of second law of thermodynamics leads to violation the Kelvin-Planck statement of II law of thermodynamics.	10	L3	CO2	
	b.	A heat pump is used for looking in summer and heating in winter. The house is maintained at 25°C year round. The heat loss is 50kW per degree difference between outside and inside temperature. The average outside temperature is 35°C in summer and -5°C in winter. Determine the power requirements for both heating and cooling.	10	L3	CO2	

BMR304

		Module – 3			
Q.5	a.	Derive Clausius inequality and prove that entropy is a property.	10	L3	CO3
	b.	A 30 Kg steel ball at 427°C is dropped in 150kg oil at 27°C, the specific heat of steel and oil are 0.5kJ/kg and 2.5kJ/kg K respectively. Estimate the entropy change of steel, oil and that of the system containing oil and steel.	10	L3	CO3
		OR OR			
Q.6	a.	Define 'Quality of Stream'. Explain any one method for determining the quality of stream with a sketch.	10	L2	CO3
	b.	Steam at 1MPa and 250°C enters a nozzle with a velocity of 60m/s and leaves the nozzle at 10 KPa. Assuming the flow process to be isentropic and the mass flow rate to be 1 kg/s determine: i) the exit velocity ii) the exit diameter.	10	L3	CO3
		Module – 4			
Q.7	a.	Define the following : i) Adiabatic flame temperature ii) Stoichiometric air/fuel ratio iii) Entropy of formation iv) Combustion efficiency v) Higher and Lower Calorific values.	10	L2	CO4
	b.	The products of combustion of an unknown hydrocarbon C_xH_y have the following composition as measured by an orsat apparatus $CO_2 = 8\%$, $CO = 0.9\%$, $O_2 = 8.8\%$, $N_2 = 82.3\%$. Determine: i) The composition of the fuel ii) The air fuel ratio iii) The percent excess air used.	10	L3	CO4
		OR			
Q.8	a.	With the help of a schematic diagram and T-S diagram, explain the working of a regenerative vapour power cycle and derive an expression for its overall efficiency.	10	, L2	CO4
	b.	A simple Rankine cycle works between the boiler pressure of 3 MPa and condenser pressure of 4 KPa. The steam is dry saturated before the throttling in the turbine. Determine: i) Rankine cycle efficiency ii) Work ratio iii) Specific Steam consumption.	10	L3	CO4
		Module – 5			
Q.9	a.	Derive expression for the thermal efficiency of a diesel cycle is terms of compression ratio and cut off ratio.	10	L3	CO5
6	b.,	In an air standard Diesel cycle, the compression ratio is 5 and the fluid properties at the beginning of compression are 100 KPa and 300 K. For a peak temperature of 1600 K, calculate the percentage of stroke at which the cutoff takes place, the cycle efficiency the workdone/Kg of air.	10	L3	CO5
		OR		_	
Q.10	a.	Explain with a neat sketch the difference between open and closed cycle gas turbine.	10	L2	CO5
	b.	Air is drawn in a gas turbine at 18°C and 1 bar and leaves the compressor at 5 bars. Data observed are temperature of gases entering the turbine 678°C. pressure loss is combustion chamber = 0.1 bar $\eta_{comp} = 85\%$, $\gamma = 1.4$ for air $\eta_{combustion} = 85\%$ C _p = 1.024 kJ/Kg K for gas $\eta_{turbine} = 80\%$, find : i) Quantity of air, if plant develops 1065kW ii) heat supplied per kg of air circulated ii) Thermal efficiency of cycle.	10	L3	CO5
		* * * * * 2 of 2			
	~				