GBGS SCHEME

USN 18EE61

Sixth Semester B.E. Degree Examination, Dec.2024/Jan.2025 Control Systems

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Distinguish between open loop and closed loop control system with examples. (06 Marks)
 - b. Find the transfer function of the electrical network shown in Fig.Q1(b) in phase load form:

Fig.Q1(b)

(06 Marks)

- c. For the mechanism system shown in Fig.Q1(c):
 - (i) Draw the mechanical network
 - (ii) Write the differential equations
 - (iii) Draw electrical network by force voltage analogy.

(08 Marks)

OR

- 2 a. Define servo motor. Compare AC servomotor and DC servo motor. (04 Marks)
 - b. For the mechanical system shown in Fig.Q2(b), obtain the equation of motion for masses M_1 and M_2 and find $\frac{X_2(s)}{F(s)}$.

Fig.Q2(b)

(08 Marks)

c. For the rotational system shown in Fig.Q2(c), draw electrical network based on torque current analogy.

- Define the following terms in connection with signal flow graph:
 - Node (i)
 - (ii) Forward path gain
 - (iii) Feedback loop
 - (iv) Non touching loops

(04 Marks)

b. For the block diagram shown in Fig.Q3(b), determine the transfer function $\frac{C(s)}{R(s)}$ using block diagram reduction technique.

(08 Marks)

For the signal flow graph shown in Fig.Q3(c), determine the transfer function Mason's gain formula.

Fig.Q3(c) (08 Marks)

OR

A system is represented by following set of equations, find $\frac{X(s)}{U(s)}$ using signal flow graph technique:

$$X(t) = x_1(t) + \beta_3 u(t)$$

$$X_1(t) = -a_1 x_1(t) + x_2(t) + \beta_2 u(t)$$

$$\dot{X}_{2}(t) = -a_{2}x_{1}(t) + \beta_{1}u(t)$$
 (08 Marks)

b. Draw the corresponding signal flow graph of given block diagram shown in Fig.Q4(b) and find $\frac{C(s)}{R(s)}$.

Fig.Q4(b)

(08 Marks)

Explain Mason's gain formula indicating each term

(04 Marks)

Module-3

Define the following for an under damped second order system: 5

(i) Rise time (ii) Peak overshoot

(iii) Settling time

(06 Marks)

- b. Derive an expression for under damped response of a second order feedback control system for unit step input.
- The characteristic equation of the system is given by $s^4 + 22s^3 + 10s^2 + 2s + K = 0$. Using RH criterion, find the range of K for which the system is stable. (06 Marks)

OR

- What are the difficulties encountered while assessing R-H criteria and how do you eliminate 6 these difficulties? Explain with examples.
 - b. Derive an expression for rise time and peak time for a second order system excited by a step
 - Evaluate the static error constants for unity feedback system with $G(s) = \frac{10}{s(1+0.1s)}$. Obtain

the steady state error when the input is $r(t) = a_0 + a_1 t + \frac{a_2 t^2}{2}$

(06 Marks)

a. Write notes on: (i) Break away point (ii) Asymptotes

(04 Marks)

Show that part of root locus of a system with $G(s)H(s) = \frac{K(s+3)}{s(s+2)}$ is a circle having centre

(-3, 0) and radius at $\sqrt{3}$.

(08 Marks)

Sketch the root locus plot for the open loop transfer function $G(s)H(s) = \frac{K}{s(s+2)(s+3)}$.

(08 Marks)

Explain the angle and magnitude condition of root locus.

(06 Marks)

b. Sketch the bodes magnitude and phase diagram for

$$G(s)H(s) = \frac{5}{s(1+0.5s)(1+0.05s)}$$

(08 Marks)

(06 Marks)

c. Find the open loop transfer function of a system whose approximate plot is as shown in Fig.Q8(c).

Module-5

- 9 a. Discuss the advantages of Nyquist plot. (06 Marks)
 - b. What is controller? Explain the effect of PI and PD controller on second order system.

 (08 Marks)
 - c. What are the limitations of single phase lead control? (06 Marks)

OR

- 10 a. A feedback control system has loop function $GH(s) = \frac{5}{s(s+1)}$. Sketch the Nyquist plot and
 - comment on the stability of a system. (08 Marks)

 Explain Nyquist stability criteria. (05 Marks)
 - c. Explain the principle of argument in Nyquist stability criteria. (07 Marks)